This is the Algebras.Func.Congruences module of the Agda Universal Algebra Library.

{-# OPTIONS --without-K --exact-split --safe #-} open import Algebras.Basic using (𝓞 ; 𝓥 ; Signature) module Algebras.Func.Congruences {𝑆 : Signature 𝓞 𝓥} where -- Imports from the Agda Standard Library --------------------------------------- open import Function using ( id ) open import Function.Bundles using ( Func ) open import Agda.Primitive using ( _⊔_ ; Level ) renaming ( Set to Type ) open import Data.Product using ( _,_ ; Σ-syntax ) open import Relation.Binary using ( Setoid ; IsEquivalence ) renaming ( Rel to BinRel ) open import Relation.Binary.PropositionalEquality using ( refl ) -- Imports from the Agda Universal Algebras Library ------------------------------ open import Overture.Preliminaries using ( ∣_∣ ; ∥_∥ ) open import Relations.Discrete using ( 0[_] ; _|:_ ) open import Algebras.Func.Basic {𝑆 = 𝑆} using ( ov ; SetoidAlgebra ; 𝕌[_] ; _̂_ ) open import Relations.Quotients using ( Equivalence ) open import Relations.Func.Quotients using ( ⟪_⟫ ; _/_ ; ⟪_∼_⟫-elim ) private variable α ρ ℓ : Level

We now define the function `compatible`

so that, if `𝑨`

denotes an algebra and `R`

a binary relation, then `compatible 𝑨 R`

will represent the assertion that `R`

is *compatible* with all basic operations of `𝑨`

. The formal definition is immediate since all the work is done by the relation `|:`

, which we defined above (see Relations.Discrete).

-- SetoidAlgebra compatibility with binary relation _∣≈_ : (𝑨 : SetoidAlgebra α ρ) → BinRel 𝕌[ 𝑨 ] ℓ → Type _ 𝑨 ∣≈ R = ∀ 𝑓 → (𝑓 ̂ 𝑨) |: R

A *congruence relation* of an algebra `𝑨`

is defined to be an equivalence relation that is compatible with the basic operations of `𝑨`

. This concept can be represented in a number of alternative but equivalent ways.
Formally, we define a record type (`IsCongruence`

) to represent the property of being a congruence, and we define a Sigma type (`Con`

) to represent the type of congruences of a given algebra.

Congruences should obviously contain the equality relation on the underlying setoid. That is, they must be reflexive. Unfortunately this doesn’t come for free (e.g., as part of the definition of `IsEquivalence`

on Setoid), so we must add the field `reflexive`

to the definition of `IsCongruence`

. (In fact, we should probably redefine equivalence relation on setiods to be reflexive with respect to the underying setoid equality (and not just with respect to *≡*).)

module _ (𝑨 : SetoidAlgebra α ρ) where open SetoidAlgebra 𝑨 using () renaming (Domain to A ) open Setoid A using ( _≈_ ) record IsCongruence (θ : BinRel 𝕌[ 𝑨 ] ℓ) : Type (𝓞 ⊔ 𝓥 ⊔ ρ ⊔ ℓ ⊔ α) where constructor mkcon field reflexive : ∀ {a₀ a₁} → a₀ ≈ a₁ → θ a₀ a₁ is-equivalence : IsEquivalence θ is-compatible : 𝑨 ∣≈ θ Eqv : Equivalence 𝕌[ 𝑨 ] {ℓ} Eqv = θ , is-equivalence open IsCongruence public Con : {ℓ : Level} → Type (α ⊔ ρ ⊔ ov ℓ) Con {ℓ} = Σ[ θ ∈ ( BinRel 𝕌[ 𝑨 ] ℓ ) ] IsCongruence θ

Each of these types captures what it means to be a congruence and they are equivalent in the sense that each implies the other. One implication is the “uncurry” operation and the other is the second projection.

IsCongruence→Con : {𝑨 : SetoidAlgebra α ρ}(θ : BinRel 𝕌[ 𝑨 ] ℓ) → IsCongruence 𝑨 θ → Con 𝑨 IsCongruence→Con θ p = θ , p Con→IsCongruence : {𝑨 : SetoidAlgebra α ρ}((θ , _) : Con 𝑨 {ℓ}) → IsCongruence 𝑨 θ Con→IsCongruence θ = ∥ θ ∥

In many areas of abstract mathematics the *quotient* of an algebra `𝑨`

with respect to a congruence relation `θ`

of `𝑨`

plays an important role. This quotient is typically denoted by `𝑨 / θ`

and Agda allows us to define and express quotients using this standard notation.

open SetoidAlgebra using ( Domain ; Interp ) open Setoid using ( Carrier ) open Func using ( cong ) renaming ( f to _⟨$⟩_ ) _╱_ : (𝑨 : SetoidAlgebra α ρ) → Con 𝑨 {ℓ} → SetoidAlgebra α ℓ Domain (𝑨 ╱ θ) = 𝕌[ 𝑨 ] / (Eqv ∥ θ ∥) (Interp (𝑨 ╱ θ)) ⟨$⟩ (f , a) = (f ̂ 𝑨) a cong (Interp (𝑨 ╱ θ)) {f , u} {.f , v} (refl , a) = is-compatible ∥ θ ∥ f a module _ (𝑨 : SetoidAlgebra α ρ) where open SetoidAlgebra 𝑨 using ( ) renaming (Domain to A ) open Setoid A using ( _≈_ ) renaming (refl to refl₁) _/∙_ : 𝕌[ 𝑨 ] → (θ : Con 𝑨{ℓ}) → Carrier (Domain (𝑨 ╱ θ)) a /∙ θ = a /-≡ : (θ : Con 𝑨{ℓ}){u v : 𝕌[ 𝑨 ]} → ⟪ u ⟫{Eqv ∥ θ ∥} ≈ ⟪ v ⟫{Eqv ∥ θ ∥} → ∣ θ ∣ u v /-≡ θ {u}{v} uv = reflexive ∥ θ ∥ uv