↑ Top


Injective functions

This is the Overture.Injective module of the agda-algebras library.

We say that a function f : A → B is injective (or monic) if it does not map two distinct elements of the domain to the same point in the codomain. The following type manifests this property.

{-# OPTIONS --without-K --exact-split --safe #-}

module Overture.Injective where

-- Imports from Agda and the Agda Standard Library ---------------------------------------------
open import Agda.Primitive   using ( _⊔_ ; Level ) renaming ( Set to Type )
open import Function.Bundles                      using ( _↣_ )
open import Function.Construct.Identity           using ( id-↣ )
open import Function.Base                         using ( _∘_ )
open import Function.Definitions as FD            using ( Injective )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl )
open import Relation.Binary  using ( Rel )


private variable α β γ ℓ₁ ℓ₂ ℓ₃ : Level


id-is-injective : {A : Type α}  A  A
id-is-injective {A = A} = id-↣ A

module _ {A : Type α}{B : Type β} where

 IsInjective : (A  B)  Type (α  β)
 IsInjective f = Injective _≡_ _≡_ f

Next, we prove that the composition of injective functions is injective.

∘-injective : {A : Type α}{B : Type β}{C : Type γ}{f : A  B}{g : B  C}
             IsInjective f  IsInjective g  IsInjective (g  f)
∘-injective fi gi = λ x  fi (gi x)


← Overture.FuncInverses Overture.Surjective →