↑ Top


Graph Structures

This is the Base.Structures.Graphs module of the Agda Universal Algebra Library.

N.B. This module differs from 0Graphs.lagda in that this module is universe polymorphic; i.e., we do not restrict universe levels (to, e.g., β„“β‚€). This complicates some things; e.g., we must use lift and lower in some places (cf. Base/Structures/Graphs0.lagda).

Definition (Graph of a structure). Let 𝑨 be an (𝑅, 𝐹)-structure (relations from 𝑅 and operations from 𝐹). The graph of 𝑨 is the structure Gr 𝑨 with the same domain as 𝑨 with relations from 𝑅 together with a (k+1)-ary relation symbol G 𝑓 for each 𝑓 ∈ 𝐹 of arity k, which is interpreted in Gr 𝑨 as all tuples (t , y) ∈ Aᡏ⁺¹ such that 𝑓 t ≑ y. (See also Definition 2 of https://arxiv.org/pdf/2010.04958v2.pdf)


{-# OPTIONS --without-K --exact-split --safe #-}

module Base.Structures.Graphs where

-- imports from Agda and the Agda Standard Library -------------------------------------------
open import Agda.Primitive  using () renaming  ( Set to Type ; lzero  to β„“β‚€ )
open import Data.Product    using ( _,_ ; Ξ£-syntax ; _Γ—_ )
open import Data.Sum.Base   using ( _⊎_ ) renaming  ( inj₁ to inl ; injβ‚‚ to inr )
open import Data.Unit.Base  using ( ⊀ ; tt )
open import Level           using (  _βŠ”_ ; Level ; Lift ; lift ; lower )
open import Function.Base   using ( _∘_  )
open import Relation.Binary.PropositionalEquality as ≑
                            using ( _≑_ ; module ≑-Reasoning )

-- Imports from the Agda Universal Algebra Library ---------------------------------------------
open import Overture               using ( ∣_∣ ; βˆ₯_βˆ₯ )
open import Base.Relations         using ( Rel )
open import Base.Structures.Basic  using ( signature ; structure )
open import Base.Structures.Homs   using ( hom ; ∘-hom ; is-hom-rel ; is-hom-op)
open import Examples.Structures.Signatures  using ( Sβˆ… )

open signature ; open structure ; open _⊎_

Gr-sig : signature β„“β‚€ β„“β‚€ β†’ signature β„“β‚€ β„“β‚€ β†’ signature β„“β‚€ β„“β‚€

Gr-sig 𝐹 𝑅 = record  { symbol = symbol 𝑅 ⊎ symbol 𝐹
                     ; arity  = ar
                     }
 where
 ar : symbol 𝑅 ⊎ symbol 𝐹 β†’ Type _
 ar (inl π‘Ÿ) = (arity 𝑅) π‘Ÿ
 ar (inr 𝑓) = (arity 𝐹) 𝑓 ⊎ ⊀

private variable
 𝐹 𝑅 : signature β„“β‚€ β„“β‚€
 α ρ : Level

Gr : βˆ€{Ξ± ρ} β†’ structure 𝐹 𝑅 {Ξ±} {ρ} β†’ structure Sβˆ… (Gr-sig 𝐹 𝑅) {Ξ±} {Ξ± βŠ” ρ}
Gr {𝐹}{𝑅}{Ξ±}{ρ} 𝑨 = record { carrier = carrier 𝑨 ; op = Ξ» () ; rel = split }
  where
  split : (s : symbol 𝑅 ⊎ symbol 𝐹) β†’ Rel (carrier 𝑨) (arity (Gr-sig 𝐹 𝑅) s) {Ξ± βŠ” ρ}
  split (inl π‘Ÿ) arg = Lift Ξ± (rel 𝑨 π‘Ÿ arg)
  split (inr 𝑓) args = Lift ρ (op 𝑨 𝑓 (args ∘ inl) ≑ args (inr tt))

open ≑-Reasoning

private variable ρᡃ Ξ² ρᡇ : Level

module _ {𝑨 : structure 𝐹 𝑅 {Ξ±} {ρᡃ}} {𝑩 : structure 𝐹 𝑅 {Ξ²} {ρᡇ}} where

 homβ†’Grhom : hom 𝑨 𝑩 β†’ hom (Gr 𝑨) (Gr 𝑩)
 hom→Grhom (h , hhom) = h , (i , ii)
  where
  i : is-hom-rel (Gr 𝑨) (Gr 𝑩) h
  i (inl π‘Ÿ) a x = lift (∣ hhom ∣ π‘Ÿ a (lower x))
  i (inr 𝑓) a x = lift goal
   where
   homop : h (op 𝑨 𝑓 (a ∘ inl)) ≑ op 𝑩 𝑓 (h ∘ (a ∘ inl))
   homop = βˆ₯ hhom βˆ₯ 𝑓 (a ∘ inl)

   goal : op 𝑩 𝑓 (h ∘ (a ∘ inl)) ≑ h (a (inr tt))
   goal =  op 𝑩 𝑓 (h ∘ (a ∘ inl))  β‰‘βŸ¨ ≑.sym homop ⟩
           h (op 𝑨 𝑓 (a ∘ inl))    β‰‘βŸ¨ ≑.cong h (lower x) ⟩
           h (a (inr tt))          ∎

  ii : is-hom-op (Gr 𝑨) (Gr 𝑩) h
  ii = Ξ» ()

 Grhomβ†’hom : hom (Gr 𝑨) (Gr 𝑩) β†’ hom 𝑨 𝑩
 Grhom→hom (h , hhom) = h , (i , ii)
  where
  i : is-hom-rel 𝑨 𝑩 h
  i R a x = lower (∣ hhom ∣ (inl R) a (lift x))
  ii : is-hom-op 𝑨 𝑩 h
  ii f a = goal
   where
   split : arity 𝐹 f ⊎ ⊀ β†’ carrier 𝑨
   split (inl x) = a x
   split (inr y) = op 𝑨 f a
   goal : h (op 𝑨 f a) ≑ op 𝑩 f (Ξ» x β†’ h (a x))
   goal = ≑.sym (lower (∣ hhom ∣ (inr f) split (lift ≑.refl)))

← Base.Structures.Basic Base.Structures.Graphs0 β†’