------------------------------------------------------------------------ -- The Agda standard library -- -- Functors ------------------------------------------------------------------------ -- Note that currently the functor laws are not included here. {-# OPTIONS --cubical-compatible --safe #-} module Effect.Functor where open import Data.Unit.Polymorphic.Base using () open import Function.Base using (const; flip) open import Level open import Relation.Binary.PropositionalEquality.Core using (_≡_) private variable ℓ′ ℓ″ : Level A B X Y : Set record RawFunctor (F : Set Set ℓ′) : Set (suc ℓ′) where infixl 4 _<$>_ _<$_ infixl 1 _<&>_ field _<$>_ : (A B) F A F B _<$_ : A F B F A x <$ y = const x <$> y _<&>_ : F A (A B) F B _<&>_ = flip _<$>_ ignore : F A F ignore = _ <$_ -- A functor morphism from F₁ to F₂ is an operation op such that -- op (F₁ f x) ≡ F₂ f (op x) record Morphism {F₁ : Set Set ℓ′} {F₂ : Set Set ℓ″} (fun₁ : RawFunctor F₁) (fun₂ : RawFunctor F₂) : Set (suc ℓ′ ℓ″) where open RawFunctor field op : F₁ X F₂ X op-<$> : (f : X Y) (x : F₁ X) op (fun₁ ._<$>_ f x) fun₂ ._<$>_ f (op x)