------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions of properties over distance functions ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Function.Metric`. {-# OPTIONS --cubical-compatible --safe #-} module Function.Metric.Definitions where open import Algebra.Core using (Op₂) open import Data.Product.Base using () open import Function.Metric.Core using (DistanceFunction) open import Level using (Level) open import Relation.Binary.Core using (Rel; _Preserves₂_⟶_⟶_) open import Relation.Nullary.Negation using (¬_) private variable a i ℓ₁ ℓ₂ : Level A : Set a I : Set i ------------------------------------------------------------------------ -- Properties Congruent : Rel A ℓ₁ Rel I ℓ₂ DistanceFunction A I Set _ Congruent _≈ₐ_ _≈ᵢ_ d = d Preserves₂ _≈ₐ_ _≈ₐ_ _≈ᵢ_ Indiscernable : Rel A ℓ₁ Rel I ℓ₂ DistanceFunction A I I Set _ Indiscernable _≈ₐ_ _≈ᵢ_ d 0# = {x y} d x y ≈ᵢ 0# x ≈ₐ y Definite : Rel A ℓ₁ Rel I ℓ₂ DistanceFunction A I I Set _ Definite _≈ₐ_ _≈ᵢ_ d 0# = {x y} x ≈ₐ y d x y ≈ᵢ 0# NonNegative : Rel I ℓ₂ DistanceFunction A I I Set _ NonNegative _≤_ d 0# = {x y} 0# d x y Symmetric : Rel I DistanceFunction A I Set _ Symmetric _≈_ d = x y d x y d y x TriangleInequality : Rel I Op₂ I DistanceFunction A I _ TriangleInequality _≤_ _∙_ d = x y z d x z (d x y d y z) Bounded : Rel I DistanceFunction A I Set _ Bounded _≤_ d = λ n x y d x y n TranslationInvariant : Rel I ℓ₂ Op₂ A DistanceFunction A I Set _ TranslationInvariant _≈_ _∙_ d = {x y a} d (x a) (y a) d x y Contracting : Rel I (A A) DistanceFunction A I Set _ Contracting _≤_ f d = x y d (f x) (f y) d x y ContractingOnOrbits : Rel I (A A) DistanceFunction A I Set _ ContractingOnOrbits _≤_ f d = x d (f x) (f (f x)) d x (f x) StrictlyContracting : Rel A ℓ₁ Rel I ℓ₂ (A A) DistanceFunction A I Set _ StrictlyContracting _≈_ _<_ f d = {x y} ¬ (y x) d (f x) (f y) < d x y StrictlyContractingOnOrbits : Rel A ℓ₁ Rel I ℓ₂ (A A) DistanceFunction A I Set _ StrictlyContractingOnOrbits _≈_ _<_ f d = {x} ¬ (f x x) d (f x) (f (f x)) < d x (f x)