------------------------------------------------------------------------ -- The Agda standard library -- -- Definitions for order-theoretic lattices ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Lattice`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Lattice.Definitions where open import Algebra.Core open import Data.Product.Base using (_×_; _,_) open import Function.Base using (flip) open import Relation.Binary.Core using (Rel) open import Level using (Level) private variable a : Level A : Set a ------------------------------------------------------------------------ -- Relationships between orders and operators Supremum : Rel A Op₂ A Set _ Supremum _≤_ _∨_ = x y x (x y) × y (x y) × z x z y z (x y) z Infimum : Rel A Op₂ A Set _ Infimum _≤_ = Supremum (flip _≤_) Exponential : Rel A Op₂ A Op₂ A Set _ Exponential _≤_ _∧_ _⇨_ = w x y ((w x) y w (x y)) × (w (x y) (w x) y)