------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional (intensional) equality - Algebraic structures ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.PropositionalEquality.Algebra where open import Algebra.Bundles using (Magma) open import Algebra.Core using (Op₂) open import Algebra.Structures using (IsMagma) open import Level using (Level) open import Relation.Binary.PropositionalEquality.Core using (_≡_; cong₂) open import Relation.Binary.PropositionalEquality.Properties using (isEquivalence) private variable a : Level A : Set a ------------------------------------------------------------------------ -- Any operation forms a magma over _≡_ isMagma : (_∙_ : Op₂ A) IsMagma _≡_ _∙_ isMagma _∙_ = record { isEquivalence = isEquivalence ; ∙-cong = cong₂ _∙_ } magma : (_∙_ : Op₂ A) Magma _ _ magma _∙_ = record { isMagma = isMagma _∙_ }