------------------------------------------------------------------------ -- The Agda standard library -- -- The basic code for equational reasoning with two relations: -- equality and some other ordering. ------------------------------------------------------------------------ -- -- See `Data.Nat.Properties` or `Relation.Binary.Reasoning.PartialOrder` -- for examples of how to instantiate this module. {-# OPTIONS --cubical-compatible --safe #-} open import Level using (_⊔_) open import Function.Base using (case_of_) open import Relation.Nullary.Decidable.Core using (Dec; yes; no) open import Relation.Binary.Core using (Rel; _⇒_) open import Relation.Binary.Definitions using (Reflexive; Trans) open import Relation.Binary.Structures using (IsPreorder) open import Relation.Binary.PropositionalEquality.Core as using (_≡_) open import Relation.Binary.Reasoning.Syntax module Relation.Binary.Reasoning.Base.Double {a ℓ₁ ℓ₂} {A : Set a} {_≈_ : Rel A ℓ₁} {_≲_ : Rel A ℓ₂} (isPreorder : IsPreorder _≈_ _≲_) where open IsPreorder isPreorder ------------------------------------------------------------------------ -- A datatype to hide the current relation type infix 4 _IsRelatedTo_ data _IsRelatedTo_ (x y : A) : Set (a ℓ₁ ℓ₂) where nonstrict : (x≲y : x y) x IsRelatedTo y equals : (x≈y : x y) x IsRelatedTo y start : _IsRelatedTo_ _≲_ start (equals x≈y) = reflexive x≈y start (nonstrict x≲y) = x≲y ≡-go : Trans _≡_ _IsRelatedTo_ _IsRelatedTo_ ≡-go x≡y (equals y≈z) = equals (case x≡y of λ where ≡.refl y≈z) ≡-go x≡y (nonstrict y≤z) = nonstrict (case x≡y of λ where ≡.refl y≤z) ≲-go : Trans _≲_ _IsRelatedTo_ _IsRelatedTo_ ≲-go x≲y (equals y≈z) = nonstrict (∼-respʳ-≈ y≈z x≲y) ≲-go x≲y (nonstrict y≲z) = nonstrict (trans x≲y y≲z) ≈-go : Trans _≈_ _IsRelatedTo_ _IsRelatedTo_ ≈-go x≈y (equals y≈z) = equals (Eq.trans x≈y y≈z) ≈-go x≈y (nonstrict y≲z) = nonstrict (∼-respˡ-≈ (Eq.sym x≈y) y≲z) stop : Reflexive _IsRelatedTo_ stop = equals Eq.refl ------------------------------------------------------------------------ -- A record that is used to ensure that the final relation proved by the -- chain of reasoning can be converted into the required relation. data IsEquality {x y} : x IsRelatedTo y Set (a ℓ₁ ℓ₂) where isEquality : x≈y IsEquality (equals x≈y) IsEquality? : {x y} (x≲y : x IsRelatedTo y) Dec (IsEquality x≲y) IsEquality? (nonstrict _) = no λ() IsEquality? (equals x≈y) = yes (isEquality x≈y) extractEquality : {x y} {x≲y : x IsRelatedTo y} IsEquality x≲y x y extractEquality (isEquality x≈y) = x≈y equalitySubRelation : SubRelation _IsRelatedTo_ _ _ equalitySubRelation = record { IsS = IsEquality ; IsS? = IsEquality? ; extract = extractEquality } ------------------------------------------------------------------------ -- Reasoning combinators open begin-syntax _IsRelatedTo_ start public open begin-equality-syntax _IsRelatedTo_ equalitySubRelation public open ≡-syntax _IsRelatedTo_ ≡-go public open ≈-syntax _IsRelatedTo_ _IsRelatedTo_ ≈-go Eq.sym public open ≲-syntax _IsRelatedTo_ _IsRelatedTo_ ≲-go public open end-syntax _IsRelatedTo_ stop public ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 2.0 open ∼-syntax _IsRelatedTo_ _IsRelatedTo_ ≲-go public {-# WARNING_ON_USAGE step-∼ "Warning: step-∼ and _∼⟨_⟩_ syntax was deprecated in v2.0. Please use step-≲ and _≲⟨_⟩_ instead. " #-}