↑ Top


Quotients of setoids

This is the Setoid.Relations.Quotients module of the Agda Universal Algebra Library.


{-# OPTIONS --without-K --exact-split --safe #-}

module Setoid.Relations.Quotients where

-- Imports from Agda and the Agda Standard Library  -------------------------------
open import Agda.Primitive    using () renaming ( Set to Type )
open import Data.Product      using ( _,_ ; Σ-syntax ) renaming ( _×_ to _∧_ )
open import Function          using ( id ) renaming ( Func to _⟶_ )
open import Level using ( Level ; _⊔_ ; suc )
open import Relation.Binary   using ( IsEquivalence ) renaming ( Rel to BinRel )
open import Relation.Unary    using ( Pred ; _∈_ ; _⊆_ )
open import Relation.Binary   using ( Setoid )
open import Relation.Binary.PropositionalEquality as 
                              using ( _≡_ )

-- Imports from agda-algebras -----------------------------------------------------
open import Overture                   using ( ∣_∣ ; ∥_∥ )
open import Base.Relations             using ( [_] ; Equivalence )
open import Setoid.Relations.Discrete  using ( fker )

private variable α β ρᵃ ρᵇ  : Level

Kernels

A prominent example of an equivalence relation is the kernel of any function.


open _⟶_ using ( cong ) renaming ( f to _⟨$⟩_ )

module _ {𝐴 : Setoid α ρᵃ}{𝐵 : Setoid β ρᵇ} where
 open Setoid 𝐴  using ( refl ) renaming (Carrier to A )
 open Setoid 𝐵  using ( sym ; trans ) renaming (Carrier to B )

 ker-IsEquivalence : (f : 𝐴  𝐵)  IsEquivalence (fker f)
 IsEquivalence.refl   (ker-IsEquivalence f) = cong f refl
 IsEquivalence.sym    (ker-IsEquivalence f) = sym
 IsEquivalence.trans  (ker-IsEquivalence f) = trans

record IsBlock  {A : Type α}{ρ : Level}
                (P : Pred A ρ){R : BinRel A ρ} : Type(α  suc ρ) where
 constructor mkblk
 field
  a : A
  P≈[a] :  x  (x  P  [ a ]{ρ} R x)  ([ a ]{ρ} R x  x  P)

open IsBlock

If R is an equivalence relation on A, then the quotient of A modulo R is denoted by A / R and is defined to be the collection {[ u ] ∣ y : A} of all R-blocks.


Quotient : (A : Type α)  Equivalence A{}  Type(α  suc )
Quotient A R = Σ[ P  Pred A _ ] IsBlock P { R }

_/_ : (A : Type α)  Equivalence A{}  Setoid _ _
A / R = record { Carrier = A ; _≈_ =  R  ; isEquivalence =  R  }

infix -1 _/_

We use the following type to represent an R-block with a designated representative.


open Setoid
⟪_⟫ : {α : Level}{A : Type α}  A  {R : Equivalence A{}}  Carrier (A / R)
 a {R} = a

module _ {A : Type α}{R : Equivalence A{} } where

 open Setoid (A / R) using () renaming ( _≈_ to _≈₁_ )

 ⟪_∼_⟫-intro : (u v : A)   R  u v   u {R} ≈₁  v {R}
  u  v ⟫-intro = id

 ⟪_∼_⟫-elim : (u v : A)   u {R} ≈₁  v {R}   R  u v
  u  v ⟫-elim = id

≡→⊆ : {A : Type α}{ρ : Level}(Q R : Pred A ρ)  Q  R  Q  R
≡→⊆ Q .Q ≡.refl {x} Qx = Qx

← Setoid.Relations.Discrete Setoid.Algebras →