{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Bundles
module Algebra.Properties.Group {g₁ g₂} (G : Group g₁ g₂) where
import Algebra.Properties.Loop as LoopProperties
import Algebra.Properties.Quasigroup as QuasigroupProperties
open import Data.Product.Base using (_,_)
open import Function.Base using (_$_)
open import Function.Definitions
open Group G
open import Algebra.Consequences.Setoid setoid
open import Algebra.Definitions _≈_
open import Algebra.Structures _≈_ using (IsLoop; IsQuasigroup)
open import Relation.Binary.Reasoning.Setoid setoid
\\-cong₂ : Congruent₂ _\\_
\\-cong₂ x≈y u≈v = ∙-cong (⁻¹-cong x≈y) u≈v
//-cong₂ : Congruent₂ _//_
//-cong₂ x≈y u≈v = ∙-cong x≈y (⁻¹-cong u≈v)
\\-leftDividesˡ : LeftDividesˡ _∙_ _\\_
\\-leftDividesˡ x y = begin
  x  ∙ (x \\ y)  ≈⟨ assoc x (x ⁻¹) y ⟨
  x ∙ x ⁻¹ ∙ y   ≈⟨ ∙-congʳ (inverseʳ x) ⟩
  ε ∙ y          ≈⟨ identityˡ y ⟩
  y              ∎
\\-leftDividesʳ : LeftDividesʳ _∙_ _\\_
\\-leftDividesʳ x y = begin
  x \\ x ∙ y     ≈⟨ assoc (x ⁻¹) x y ⟨
  x ⁻¹ ∙ x ∙ y   ≈⟨ ∙-congʳ (inverseˡ x) ⟩
  ε ∙ y          ≈⟨ identityˡ y ⟩
  y              ∎
\\-leftDivides : LeftDivides _∙_ _\\_
\\-leftDivides = \\-leftDividesˡ , \\-leftDividesʳ
//-rightDividesˡ : RightDividesˡ _∙_ _//_
//-rightDividesˡ x y = begin
  (y // x) ∙ x    ≈⟨ assoc y (x ⁻¹) x ⟩
  y ∙ (x ⁻¹ ∙ x)  ≈⟨ ∙-congˡ (inverseˡ x) ⟩
  y ∙ ε           ≈⟨ identityʳ y ⟩
  y               ∎
//-rightDividesʳ : RightDividesʳ _∙_ _//_
//-rightDividesʳ x y = begin
  y ∙ x // x    ≈⟨ assoc y x (x ⁻¹) ⟩
  y ∙ (x // x)  ≈⟨ ∙-congˡ (inverseʳ x) ⟩
  y ∙ ε         ≈⟨ identityʳ y ⟩
  y             ∎
//-rightDivides : RightDivides _∙_ _//_
//-rightDivides = //-rightDividesˡ , //-rightDividesʳ
isQuasigroup : IsQuasigroup _∙_ _\\_ _//_
isQuasigroup = record
  { isMagma = isMagma
  ; \\-cong = \\-cong₂
  ; //-cong = //-cong₂
  ; leftDivides = \\-leftDivides
  ; rightDivides = //-rightDivides
  }
quasigroup : Quasigroup _ _
quasigroup = record { isQuasigroup = isQuasigroup }
open QuasigroupProperties quasigroup public
  using (x≈z//y; y≈x\\z)
  renaming (cancelˡ to ∙-cancelˡ; cancelʳ to ∙-cancelʳ; cancel to ∙-cancel)
isLoop : IsLoop _∙_ _\\_ _//_ ε
isLoop = record { isQuasigroup = isQuasigroup ; identity = identity }
loop : Loop _ _
loop = record { isLoop = isLoop }
open LoopProperties loop public
  using (identityˡ-unique; identityʳ-unique; identity-unique)
inverseˡ-unique : ∀ x y → x ∙ y ≈ ε → x ≈ y ⁻¹
inverseˡ-unique x y eq = trans (x≈z//y x y ε eq) (identityˡ _)
inverseʳ-unique : ∀ x y → x ∙ y ≈ ε → y ≈ x ⁻¹
inverseʳ-unique x y eq = trans (y≈x\\z x y ε eq) (identityʳ _)
ε⁻¹≈ε : ε ⁻¹ ≈ ε
ε⁻¹≈ε = sym $ inverseˡ-unique _ _ (identityˡ ε)
⁻¹-selfInverse : SelfInverse _⁻¹
⁻¹-selfInverse {x} {y} eq = sym $ inverseˡ-unique x y $ begin
  x ∙ y    ≈⟨ ∙-congˡ eq ⟨
  x ∙ x ⁻¹ ≈⟨ inverseʳ x  ⟩
  ε        ∎
⁻¹-involutive : Involutive _⁻¹
⁻¹-involutive = selfInverse⇒involutive ⁻¹-selfInverse
x∙y⁻¹≈ε⇒x≈y : ∀ x y → (x ∙ y ⁻¹) ≈ ε → x ≈ y
x∙y⁻¹≈ε⇒x≈y x y x∙y⁻¹≈ε = begin
  x         ≈⟨ inverseˡ-unique x (y ⁻¹) x∙y⁻¹≈ε ⟩
  y ⁻¹ ⁻¹   ≈⟨ ⁻¹-involutive y ⟩
  y         ∎
x≈y⇒x∙y⁻¹≈ε : ∀ {x y} → x ≈ y → (x ∙ y ⁻¹) ≈ ε
x≈y⇒x∙y⁻¹≈ε {x} {y} x≈y = begin
  x ∙ y ⁻¹ ≈⟨ ∙-congʳ x≈y ⟩
  y ∙ y ⁻¹ ≈⟨ inverseʳ y ⟩
  ε        ∎
⁻¹-injective : Injective _≈_ _≈_ _⁻¹
⁻¹-injective = selfInverse⇒injective ⁻¹-selfInverse
⁻¹-anti-homo-∙ : ∀ x y → (x ∙ y) ⁻¹ ≈ y ⁻¹ ∙ x ⁻¹
⁻¹-anti-homo-∙ x y = ∙-cancelˡ _ _ _ $ begin
  x ∙ y ∙ (x ∙ y) ⁻¹    ≈⟨ inverseʳ _ ⟩
  ε                     ≈⟨ inverseʳ _ ⟨
  x ∙ x ⁻¹              ≈⟨ ∙-congʳ (//-rightDividesʳ y x) ⟨
  (x ∙ y) ∙ y ⁻¹ ∙ x ⁻¹ ≈⟨ assoc (x ∙ y) (y ⁻¹) (x ⁻¹) ⟩
  x ∙ y ∙ (y ⁻¹ ∙ x ⁻¹) ∎
⁻¹-anti-homo-// : ∀ x y → (x // y) ⁻¹ ≈ y // x
⁻¹-anti-homo-// x y = begin
  (x // y) ⁻¹      ≡⟨⟩
  (x ∙ y ⁻¹) ⁻¹    ≈⟨ ⁻¹-anti-homo-∙ x (y ⁻¹) ⟩
  (y ⁻¹) ⁻¹ ∙ x ⁻¹ ≈⟨ ∙-congʳ (⁻¹-involutive y) ⟩
  y ∙ x ⁻¹         ≡⟨⟩
  y // x ∎
⁻¹-anti-homo-\\ : ∀ x y → (x \\ y) ⁻¹ ≈ y \\ x
⁻¹-anti-homo-\\ x y = begin
  (x \\ y) ⁻¹      ≡⟨⟩
  (x ⁻¹ ∙ y) ⁻¹    ≈⟨ ⁻¹-anti-homo-∙ (x ⁻¹) y ⟩
  y ⁻¹ ∙ (x ⁻¹) ⁻¹ ≈⟨ ∙-congˡ (⁻¹-involutive x) ⟩
  y ⁻¹ ∙ x         ≡⟨⟩
  y \\ x ∎
\\≗flip-//⇒comm : (∀ x y → x \\ y ≈ y // x) → Commutative _∙_
\\≗flip-//⇒comm \\≗//ᵒ x y = begin
  x ∙ y                ≈⟨ ∙-congˡ (//-rightDividesˡ x y) ⟨
  x ∙ ((y // x) ∙ x)   ≈⟨ ∙-congˡ (∙-congʳ (\\≗//ᵒ x y)) ⟨
  x ∙ ((x \\ y) ∙ x)   ≈⟨ assoc x (x \\ y) x ⟨
  x ∙ (x \\ y) ∙ x     ≈⟨ ∙-congʳ (\\-leftDividesˡ x y) ⟩
  y ∙ x                ∎
comm⇒\\≗flip-// : Commutative _∙_ → ∀ x y → x \\ y ≈ y // x
comm⇒\\≗flip-// comm x y = begin
  x \\ y    ≡⟨⟩
  x ⁻¹ ∙ y  ≈⟨ comm _ _ ⟩
  y ∙ x ⁻¹  ≡⟨⟩
  y // x    ∎