This is the [Base.Overture.Inverses][] module of the agda-algebras library.
{-# OPTIONS --without-K --exact-split --safe #-} module Base.Overture.Inverses where -- Imports from Agda and the Agda Standard Library --------------------------------------------- open import Agda.Primitive using ( _⊔_ ; Level ) renaming ( Set to Type ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; sym ; refl ) open import Relation.Unary using ( Pred ; _∈_ ) open import Data.Product using ( _,_ ; Σ-syntax ) -- Imports from agda-algebras ---------------------------------------------------------------- open import Base.Overture.Preliminaries using ( ∃-syntax ; ∣_∣ ) private variable α β : Level
We begin by defining an data type that represents the semantic concept of inverse image of a function.
module _ {A : Type α }{B : Type β } where data Image_∋_ (f : A → B) : B → Type (α ⊔ β) where eq : {b : B} → (a : A) → b ≡ f a → Image f ∋ b open Image_∋_ Range : (A → B) → Pred B (α ⊔ β) Range f b = ∃[ a ∈ A ] (f a) ≡ b range : (A → B) → Type (α ⊔ β) range f = Σ[ b ∈ B ] ∃[ a ∈ A ](f a) ≡ b Image⊆Range : (f : A → B) → ∀ b → Image f ∋ b → b ∈ Range f Image⊆Range f b (eq a x) = a , (sym x) Range⊆Image : (f : A → B) → ∀ b → b ∈ Range f → Image f ∋ b Range⊆Image f b (a , x) = eq a (sym x) Imagef∋f : {f : A → B}{a : A} → Image f ∋ (f a) Imagef∋f = eq _ refl f∈range : {f : A → B}(a : A) → range f f∈range {f} a = (f a) , (a , refl)
An inhabitant of Image f ∋ b
is a dependent pair (a , p)
, where a : A
and p : b ≡ f a
is a proof that f
maps a
to b
. Since the proof that b
belongs to the image of f
is always accompanied by a witness a : A
, we can actually compute a (pseudo)inverse of f
. For convenience, we define this inverse function, which we call Inv
, and which takes an arbitrary b : B
and a (witness, proof)-pair, (a , p) : Image f ∋ b
, and returns the witness a
.
Inv : (f : A → B){b : B} → Image f ∋ b → A Inv f (eq a _) = a [_]⁻¹ : (f : A → B) → range f → A [ f ]⁻¹ (_ , (a , _)) = a
We can prove that Inv f
is the (range-restricted) right-inverse of f
, as follows.
InvIsInverseʳ : {f : A → B}{b : B}(q : Image f ∋ b) → f(Inv f q) ≡ b InvIsInverseʳ (eq _ p) = sym p ⁻¹IsInverseʳ : {f : A → B}{bap : range f} → f ([ f ]⁻¹ bap) ≡ ∣ bap ∣ ⁻¹IsInverseʳ {bap = (_ , (_ , p))} = p
Of course, the “range-restricted” qualifier is needed because Inf f
is not defined outside the range of f
.
In a certain sense, Inv f
is also a (range-restricted) left-inverse.
InvIsInverseˡ : ∀ {f a} → Inv f {b = f a} Imagef∋f ≡ a InvIsInverseˡ = refl ⁻¹IsInverseˡ : ∀ {f a} → [ f ]⁻¹ (f∈range a) ≡ a ⁻¹IsInverseˡ = refl