↑ Top


Homomorphism decomposition

This is the Base.Homomorphisms.Factor module of the Agda Universal Algebra Library in which we prove the following theorem:

If τ : hom 𝑨 𝑩, ν : hom 𝑨 𝑪, ν is surjective, and ker ν ⊆ ker τ, then there exists φ : hom 𝑪 𝑩 such that τ = φ ∘ ν so the following diagram commutes:

𝑨 --- ν ->> 𝑪
 \         .
  \       .
   τ     φ
    \   .
     \ .
      V
      𝑩

{-# OPTIONS --without-K --exact-split --safe #-}

open import Overture using ( 𝓞 ; 𝓥 ; Signature )

module Base.Homomorphisms.Factor {𝑆 : Signature 𝓞 𝓥} where

-- Imports from Agda and the Agda Standard Library ---------------------------------------
open import Data.Product    using ( Σ-syntax ; _,_ )
                            renaming ( proj₁ to fst ; proj₂ to snd )
open import Function        using ( _∘_ )
open import Level           using ( Level )
open import Relation.Unary  using ( _⊆_ )

open  import Relation.Binary.PropositionalEquality as 
      using ( module ≡-Reasoning ; _≡_ )

-- Imports from agda-algebras --------------------------------------------------------------
open import Overture        using ( ∣_∣ ; ∥_∥ ; _⁻¹ )
open import Base.Equality   using ( swelldef )
open import Base.Relations  using ( kernel )
open import Base.Functions  using ( IsSurjective ; SurjInv )
                            using ( SurjInvIsInverseʳ ; epic-factor )

open import Base.Algebras             {𝑆 = 𝑆}  using ( Algebra ; _̂_)
open import Base.Homomorphisms.Basic  {𝑆 = 𝑆}  using ( hom ; epi )

private variable α β γ : Level

module _ {𝑨 : Algebra α}{𝑪 : Algebra γ} where

 open ≡-Reasoning

 HomFactor :  swelldef 𝓥 γ
             (𝑩 : Algebra β)(τ : hom 𝑨 𝑩)(ν : hom 𝑨 𝑪)
             kernel  ν   kernel  τ   IsSurjective  ν 
              -----------------------------------------------------
             Σ[ φ  (hom 𝑪 𝑩)]  x   τ  x   φ  ( ν  x)

 HomFactor wd 𝑩 τ ν Kντ νE = (φ , φIsHomCB) , τφν
  where
   νInv :  𝑪    𝑨 
   νInv = SurjInv  ν  νE

   η :  c   ν  (νInv c)  c
   η c = SurjInvIsInverseʳ  ν  νE c

   φ :  𝑪    𝑩 
   φ =  τ   νInv

   ξ :  a  kernel  ν  (a , νInv ( ν  a))
   ξ a = (η ( ν  a))⁻¹

   τφν :  x   τ  x  φ ( ν  x)
   τφν = λ x  Kντ (ξ x)

   φIsHomCB :  𝑓 c  φ ((𝑓 ̂ 𝑪) c)  ((𝑓 ̂ 𝑩)(φ  c))
   φIsHomCB 𝑓 c =
    φ ((𝑓 ̂ 𝑪) c)                    ≡⟨ goal 
    φ ((𝑓 ̂ 𝑪)( ν  (νInv  c)))   ≡⟨ ≡.cong φ ( ν  𝑓 (νInv  c))⁻¹ 
    φ ( ν ((𝑓 ̂ 𝑨)(νInv  c)))     ≡⟨ (τφν ((𝑓 ̂ 𝑨)(νInv  c)))⁻¹ 
     τ ((𝑓 ̂ 𝑨)(νInv  c))         ≡⟨  τ  𝑓 (νInv  c) 
    (𝑓 ̂ 𝑩)(λ x   τ (νInv (c x))) 
     where
     goal : φ ((𝑓 ̂ 𝑪) c)  φ ((𝑓 ̂ 𝑪) ( ν  (νInv  c)))
     goal = ≡.cong φ (wd (𝑓 ̂ 𝑪) c ( ν   (νInv  c)) λ i  (η (c i))⁻¹)

If, in addition to the hypotheses of the last theorem, we assume τ is epic, then so is φ.


 HomFactorEpi :  swelldef 𝓥 γ
                (𝑩 : Algebra β)(τ : hom 𝑨 𝑩)(ν : hom 𝑨 𝑪)
                kernel  ν   kernel  τ 
                IsSurjective  ν   IsSurjective  τ 
                 ---------------------------------------------
                Σ[ φ  epi 𝑪 𝑩 ]  x   τ  x   φ  ( ν  x)

 HomFactorEpi wd 𝑩 τ ν kerincl νe τe = (fst  φF  ,(snd  φF  , φE)),  φF 
  where
   φF : Σ[ φ  hom 𝑪 𝑩 ]  x   τ  x   φ  ( ν  x)
   φF = HomFactor wd 𝑩 τ ν kerincl νe

   φ :  𝑪    𝑩 
   φ =  τ   (SurjInv  ν  νe)

   φE : IsSurjective φ
   φE = epic-factor  τ   ν  φ  φF  τe

← Base.Homomorphisms.Noether Base.Homomorphisms.Isomorphisms →