------------------------------------------------------------------------ -- The Agda standard library -- -- Properties related to Fin, and operations making use of these -- properties (or other properties not available in Data.Fin) ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} {-# OPTIONS --warn=noUserWarning #-} -- for deprecated _≺_ and _≻toℕ_ (issue #1726) module Data.Fin.Properties where open import Axiom.Extensionality.Propositional open import Algebra.Definitions using (Involutive) open import Effect.Applicative using (RawApplicative) open import Effect.Functor using (RawFunctor) open import Data.Bool.Base using (Bool; true; false; not; _∧_; _∨_) open import Data.Empty using (; ⊥-elim) open import Data.Fin.Base open import Data.Fin.Patterns open import Data.Nat.Base as using (; zero; suc; s≤s; z≤n; z<s; s<s; s<s⁻¹; _∸_; _^_) import Data.Nat.Properties as open import Data.Unit.Base using (; tt) open import Data.Product.Base as Product using (; ∃₂; _×_; _,_; map; proj₁; proj₂; uncurry; <_,_>) open import Data.Product.Properties using (,-injective) open import Data.Product.Algebra using (×-cong) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]; [_,_]′) open import Data.Sum.Properties using ([,]-map; [,]-∘) open import Function.Base using (_∘_; id; _$_; flip) open import Function.Bundles using (Injection; _↣_; _⇔_; _↔_; mk⇔; mk↔ₛ′) open import Function.Definitions using (Injective; Surjective) open import Function.Consequences.Propositional using (contraInjective) open import Function.Construct.Composition as Comp hiding (injective) open import Level using (Level) open import Relation.Binary.Definitions as B hiding (Decidable) open import Relation.Binary.Core using (_⇒_; _Preserves_⟶_) open import Relation.Binary.Bundles using (Preorder; Setoid; DecSetoid; Poset; TotalOrder; DecTotalOrder; StrictPartialOrder; StrictTotalOrder) open import Relation.Binary.Structures using (IsDecEquivalence; IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder; IsStrictPartialOrder; IsStrictTotalOrder) open import Relation.Binary.PropositionalEquality.Core as using (_≡_; _≢_; refl; sym; trans; cong; cong₂; subst; _≗_) open import Relation.Binary.PropositionalEquality.Properties as using (module ≡-Reasoning) open import Relation.Nullary.Decidable as Dec using (Dec; _because_; yes; no; _×-dec_; _⊎-dec_; map′) open import Relation.Nullary.Negation.Core using (¬_; contradiction) open import Relation.Nullary.Reflects using (Reflects; invert) open import Relation.Unary as U using (U; Pred; Decidable; _⊆_; Satisfiable; Universal) open import Relation.Unary.Properties using (U?) private variable a : Level A : Set a m n o : i j : Fin n ------------------------------------------------------------------------ -- Fin ------------------------------------------------------------------------ ¬Fin0 : ¬ Fin 0 ¬Fin0 () nonZeroIndex : Fin n ℕ.NonZero n nonZeroIndex {n = suc _} _ = _ ------------------------------------------------------------------------ -- Bundles 0↔⊥ : Fin 0 0↔⊥ = mk↔ₛ′ ¬Fin0 ()) ()) ()) 1↔⊤ : Fin 1 1↔⊤ = mk↔ₛ′ { 0F tt }) { tt 0F }) { tt refl }) λ { 0F refl } 2↔Bool : Fin 2 Bool 2↔Bool = mk↔ₛ′ { 0F false; 1F true }) { false 0F ; true 1F }) { false refl ; true refl }) { 0F refl ; 1F refl }) ------------------------------------------------------------------------ -- Properties of _≡_ ------------------------------------------------------------------------ 0≢1+n : zero Fin.suc i 0≢1+n () suc-injective : Fin.suc i suc j i j suc-injective refl = refl infix 4 _≟_ _≟_ : DecidableEquality (Fin n) zero zero = yes refl zero suc y = no λ() suc x zero = no λ() suc x suc y = map′ (cong suc) suc-injective (x y) ------------------------------------------------------------------------ -- Structures ≡-isDecEquivalence : IsDecEquivalence {A = Fin n} _≡_ ≡-isDecEquivalence = record { isEquivalence = ≡.isEquivalence ; _≟_ = _≟_ } ------------------------------------------------------------------------ -- Bundles ≡-preorder : Preorder _ _ _ ≡-preorder n = ≡.preorder (Fin n) ≡-setoid : Setoid _ _ ≡-setoid n = ≡.setoid (Fin n) ≡-decSetoid : DecSetoid _ _ ≡-decSetoid n = record { isDecEquivalence = ≡-isDecEquivalence {n} } ------------------------------------------------------------------------ -- toℕ ------------------------------------------------------------------------ toℕ-injective : toℕ i toℕ j i j toℕ-injective {zero} {} {} _ toℕ-injective {suc n} {zero} {zero} eq = refl toℕ-injective {suc n} {suc i} {suc j} eq = cong suc (toℕ-injective (cong ℕ.pred eq)) toℕ-strengthen : (i : Fin n) toℕ (strengthen i) toℕ i toℕ-strengthen zero = refl toℕ-strengthen (suc i) = cong suc (toℕ-strengthen i) ------------------------------------------------------------------------ -- toℕ-↑ˡ: "i" ↑ˡ n = "i" in Fin (m + n) ------------------------------------------------------------------------ toℕ-↑ˡ : (i : Fin m) n toℕ (i ↑ˡ n) toℕ i toℕ-↑ˡ zero n = refl toℕ-↑ˡ (suc i) n = cong suc (toℕ-↑ˡ i n) ↑ˡ-injective : n (i j : Fin m) i ↑ˡ n j ↑ˡ n i j ↑ˡ-injective n zero zero refl = refl ↑ˡ-injective n (suc i) (suc j) eq = cong suc (↑ˡ-injective n i j (suc-injective eq)) ------------------------------------------------------------------------ -- toℕ-↑ʳ: n ↑ʳ "i" = "n + i" in Fin (n + m) ------------------------------------------------------------------------ toℕ-↑ʳ : n (i : Fin m) toℕ (n ↑ʳ i) n ℕ.+ toℕ i toℕ-↑ʳ zero i = refl toℕ-↑ʳ (suc n) i = cong suc (toℕ-↑ʳ n i) ↑ʳ-injective : n (i j : Fin m) n ↑ʳ i n ↑ʳ j i j ↑ʳ-injective zero i i refl = refl ↑ʳ-injective (suc n) i j eq = ↑ʳ-injective n i j (suc-injective eq) ------------------------------------------------------------------------ -- toℕ and the ordering relations ------------------------------------------------------------------------ toℕ<n : (i : Fin n) toℕ i ℕ.< n toℕ<n {n = suc _} zero = z<s toℕ<n {n = suc _} (suc i) = s<s (toℕ<n i) toℕ≤pred[n] : (i : Fin n) toℕ i ℕ.≤ ℕ.pred n toℕ≤pred[n] zero = z≤n toℕ≤pred[n] (suc {n = suc n} i) = s≤s (toℕ≤pred[n] i) toℕ≤n : (i : Fin n) toℕ i ℕ.≤ n toℕ≤n {suc n} i = ℕ.m≤n⇒m≤1+n (toℕ≤pred[n] i) -- A simpler implementation of toℕ≤pred[n], -- however, with a different reduction behavior. -- If no one needs the reduction behavior of toℕ≤pred[n], -- it can be removed in favor of toℕ≤pred[n]′. toℕ≤pred[n]′ : (i : Fin n) toℕ i ℕ.≤ ℕ.pred n toℕ≤pred[n]′ i = ℕ.<⇒≤pred (toℕ<n i) toℕ-mono-< : i < j toℕ i ℕ.< toℕ j toℕ-mono-< i<j = i<j toℕ-mono-≤ : i j toℕ i ℕ.≤ toℕ j toℕ-mono-≤ i≤j = i≤j toℕ-cancel-≤ : toℕ i ℕ.≤ toℕ j i j toℕ-cancel-≤ i≤j = i≤j toℕ-cancel-< : toℕ i ℕ.< toℕ j i < j toℕ-cancel-< i<j = i<j ------------------------------------------------------------------------ -- fromℕ ------------------------------------------------------------------------ toℕ-fromℕ : n toℕ (fromℕ n) n toℕ-fromℕ zero = refl toℕ-fromℕ (suc n) = cong suc (toℕ-fromℕ n) fromℕ-toℕ : (i : Fin n) fromℕ (toℕ i) strengthen i fromℕ-toℕ zero = refl fromℕ-toℕ (suc i) = cong suc (fromℕ-toℕ i) ≤fromℕ : (i : Fin (suc n)) i fromℕ n ≤fromℕ {n = n} i rewrite toℕ-fromℕ n = ℕ.s≤s⁻¹ (toℕ<n i) ------------------------------------------------------------------------ -- fromℕ< ------------------------------------------------------------------------ fromℕ<-toℕ : (i : Fin n) .(i<n : toℕ i ℕ.< n) fromℕ< i<n i fromℕ<-toℕ zero _ = refl fromℕ<-toℕ (suc i) i<n = cong suc (fromℕ<-toℕ i (ℕ.s<s⁻¹ i<n)) toℕ-fromℕ< : .(m<n : m ℕ.< n) toℕ (fromℕ< m<n) m toℕ-fromℕ< {m = zero} {n = suc _} _ = refl toℕ-fromℕ< {m = suc m} {n = suc _} m<n = cong suc (toℕ-fromℕ< (ℕ.s<s⁻¹ m<n)) -- fromℕ is a special case of fromℕ<. fromℕ-def : n fromℕ n fromℕ< ℕ.≤-refl fromℕ-def zero = refl fromℕ-def (suc n) = cong suc (fromℕ-def n) fromℕ<-cong : m n {o} m n .(m<o : m ℕ.< o) .(n<o : n ℕ.< o) fromℕ< m<o fromℕ< n<o fromℕ<-cong 0 0 _ _ _ = refl fromℕ<-cong (suc _) (suc _) {o = suc _} r m<n n<o = cong suc (fromℕ<-cong _ _ (ℕ.suc-injective r) (ℕ.s<s⁻¹ m<n) (ℕ.s<s⁻¹ n<o)) fromℕ<-injective : m n {o} .(m<o : m ℕ.< o) .(n<o : n ℕ.< o) fromℕ< m<o fromℕ< n<o m n fromℕ<-injective 0 0 _ _ _ = refl fromℕ<-injective 0 (suc _) {o = suc _} _ _ () fromℕ<-injective (suc _) (suc _) {o = suc _} m<n n<o r = cong suc (fromℕ<-injective _ _ (ℕ.s<s⁻¹ m<n) (ℕ.s<s⁻¹ n<o) (suc-injective r)) ------------------------------------------------------------------------ -- fromℕ<″ ------------------------------------------------------------------------ fromℕ<≡fromℕ<″ : (m<n : m ℕ.< n) (m<″n : m ℕ.<″ n) fromℕ< m<n fromℕ<″ m m<″n fromℕ<≡fromℕ<″ {m = zero} {n = suc _} _ _ = refl fromℕ<≡fromℕ<″ {m = suc m} {n = suc _} m<n m<″n = cong suc (fromℕ<≡fromℕ<″ (ℕ.s<s⁻¹ m<n) (ℕ.s<″s⁻¹ m<″n)) toℕ-fromℕ<″ : (m<n : m ℕ.<″ n) toℕ (fromℕ<″ m m<n) m toℕ-fromℕ<″ {m} {n} m<n = begin toℕ (fromℕ<″ m m<n) ≡⟨ cong toℕ (sym (fromℕ<≡fromℕ<″ (ℕ.≤″⇒≤ m<n) m<n)) toℕ (fromℕ< _) ≡⟨ toℕ-fromℕ< (ℕ.≤″⇒≤ m<n) m where open ≡-Reasoning ------------------------------------------------------------------------ -- Properties of cast ------------------------------------------------------------------------ toℕ-cast : .(eq : m n) (k : Fin m) toℕ (cast eq k) toℕ k toℕ-cast {n = suc n} eq zero = refl toℕ-cast {n = suc n} eq (suc k) = cong suc (toℕ-cast (cong ℕ.pred eq) k) cast-is-id : .(eq : m m) (k : Fin m) cast eq k k cast-is-id eq zero = refl cast-is-id eq (suc k) = cong suc (cast-is-id (ℕ.suc-injective eq) k) subst-is-cast : (eq : m n) (k : Fin m) subst Fin eq k cast eq k subst-is-cast refl k = sym (cast-is-id refl k) cast-trans : .(eq₁ : m n) .(eq₂ : n o) (k : Fin m) cast eq₂ (cast eq₁ k) cast (trans eq₁ eq₂) k cast-trans {m = suc _} {n = suc _} {o = suc _} eq₁ eq₂ zero = refl cast-trans {m = suc _} {n = suc _} {o = suc _} eq₁ eq₂ (suc k) = cong suc (cast-trans (ℕ.suc-injective eq₁) (ℕ.suc-injective eq₂) k) ------------------------------------------------------------------------ -- Properties of _≤_ ------------------------------------------------------------------------ -- Relational properties ≤-reflexive : _≡_ (_≤_ {n}) ≤-reflexive refl = ℕ.≤-refl ≤-refl : Reflexive (_≤_ {n}) ≤-refl = ≤-reflexive refl ≤-trans : Transitive (_≤_ {n}) ≤-trans = ℕ.≤-trans ≤-antisym : Antisymmetric _≡_ (_≤_ {n}) ≤-antisym x≤y y≤x = toℕ-injective (ℕ.≤-antisym x≤y y≤x) ≤-total : Total (_≤_ {n}) ≤-total x y = ℕ.≤-total (toℕ x) (toℕ y) ≤-irrelevant : Irrelevant (_≤_ {m} {n}) ≤-irrelevant = ℕ.≤-irrelevant infix 4 _≤?_ _<?_ _≤?_ : B.Decidable (_≤_ {m} {n}) a ≤? b = toℕ a ℕ.≤? toℕ b _<?_ : B.Decidable (_<_ {m} {n}) m <? n = suc (toℕ m) ℕ.≤? toℕ n ------------------------------------------------------------------------ -- Structures ≤-isPreorder : IsPreorder {A = Fin n} _≡_ _≤_ ≤-isPreorder = record { isEquivalence = ≡.isEquivalence ; reflexive = ≤-reflexive ; trans = ≤-trans } ≤-isPartialOrder : IsPartialOrder {A = Fin n} _≡_ _≤_ ≤-isPartialOrder = record { isPreorder = ≤-isPreorder ; antisym = ≤-antisym } ≤-isTotalOrder : IsTotalOrder {A = Fin n} _≡_ _≤_ ≤-isTotalOrder = record { isPartialOrder = ≤-isPartialOrder ; total = ≤-total } ≤-isDecTotalOrder : IsDecTotalOrder {A = Fin n} _≡_ _≤_ ≤-isDecTotalOrder = record { isTotalOrder = ≤-isTotalOrder ; _≟_ = _≟_ ; _≤?_ = _≤?_ } ------------------------------------------------------------------------ -- Bundles ≤-preorder : Preorder _ _ _ ≤-preorder n = record { isPreorder = ≤-isPreorder {n} } ≤-poset : Poset _ _ _ ≤-poset n = record { isPartialOrder = ≤-isPartialOrder {n} } ≤-totalOrder : TotalOrder _ _ _ ≤-totalOrder n = record { isTotalOrder = ≤-isTotalOrder {n} } ≤-decTotalOrder : DecTotalOrder _ _ _ ≤-decTotalOrder n = record { isDecTotalOrder = ≤-isDecTotalOrder {n} } ------------------------------------------------------------------------ -- Properties of _<_ ------------------------------------------------------------------------ -- Relational properties <-irrefl : Irreflexive _≡_ (_<_ {n}) <-irrefl refl = ℕ.<-irrefl refl <-asym : Asymmetric (_<_ {n}) <-asym = ℕ.<-asym <-trans : Transitive (_<_ {n}) <-trans = ℕ.<-trans <-cmp : Trichotomous _≡_ (_<_ {n}) <-cmp zero zero = tri≈ (λ()) refl (λ()) <-cmp zero (suc j) = tri< z<s (λ()) (λ()) <-cmp (suc i) zero = tri> (λ()) (λ()) z<s <-cmp (suc i) (suc j) with <-cmp i j ... | tri< i<j i≢j j≮i = tri< (s<s i<j) (i≢j suc-injective) (j≮i s<s⁻¹) ... | tri> i≮j i≢j j<i = tri> (i≮j s<s⁻¹) (i≢j suc-injective) (s<s j<i) ... | tri≈ i≮j i≡j j≮i = tri≈ (i≮j s<s⁻¹) (cong suc i≡j) (j≮i s<s⁻¹) <-respˡ-≡ : (_<_ {m} {n}) Respectsˡ _≡_ <-respˡ-≡ refl x≤y = x≤y <-respʳ-≡ : (_<_ {m} {n}) Respectsʳ _≡_ <-respʳ-≡ refl x≤y = x≤y <-resp₂-≡ : (_<_ {n}) Respects₂ _≡_ <-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡ <-irrelevant : Irrelevant (_<_ {m} {n}) <-irrelevant = ℕ.<-irrelevant ------------------------------------------------------------------------ -- Structures <-isStrictPartialOrder : IsStrictPartialOrder {A = Fin n} _≡_ _<_ <-isStrictPartialOrder = record { isEquivalence = ≡.isEquivalence ; irrefl = <-irrefl ; trans = <-trans ; <-resp-≈ = <-resp₂-≡ } <-isStrictTotalOrder : IsStrictTotalOrder {A = Fin n} _≡_ _<_ <-isStrictTotalOrder = record { isStrictPartialOrder = <-isStrictPartialOrder ; compare = <-cmp } ------------------------------------------------------------------------ -- Bundles <-strictPartialOrder : StrictPartialOrder _ _ _ <-strictPartialOrder n = record { isStrictPartialOrder = <-isStrictPartialOrder {n} } <-strictTotalOrder : StrictTotalOrder _ _ _ <-strictTotalOrder n = record { isStrictTotalOrder = <-isStrictTotalOrder {n} } ------------------------------------------------------------------------ -- Other properties i<1+i : (i : Fin n) i < suc i i<1+i = ℕ.n<1+n toℕ <⇒≢ : i < j i j <⇒≢ i<i refl = ℕ.n≮n _ i<i ≤∧≢⇒< : i j i j i < j ≤∧≢⇒< {i = zero} {zero} _ 0≢0 = contradiction refl 0≢0 ≤∧≢⇒< {i = zero} {suc j} _ _ = z<s ≤∧≢⇒< {i = suc i} {suc j} 1+i≤1+j 1+i≢1+j = s<s (≤∧≢⇒< (ℕ.s≤s⁻¹ 1+i≤1+j) (1+i≢1+j (cong suc))) ------------------------------------------------------------------------ -- inject ------------------------------------------------------------------------ toℕ-inject : {i : Fin n} (j : Fin′ i) toℕ (inject j) toℕ j toℕ-inject {i = suc i} zero = refl toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j) ------------------------------------------------------------------------ -- inject₁ ------------------------------------------------------------------------ fromℕ≢inject₁ : fromℕ n inject₁ i fromℕ≢inject₁ {i = suc i} eq = fromℕ≢inject₁ {i = i} (suc-injective eq) inject₁-injective : inject₁ i inject₁ j i j inject₁-injective {i = zero} {zero} i≡j = refl inject₁-injective {i = suc i} {suc j} i≡j = cong suc (inject₁-injective (suc-injective i≡j)) toℕ-inject₁ : (i : Fin n) toℕ (inject₁ i) toℕ i toℕ-inject₁ zero = refl toℕ-inject₁ (suc i) = cong suc (toℕ-inject₁ i) toℕ-inject₁-≢ : (i : Fin n) n toℕ (inject₁ i) toℕ-inject₁-≢ (suc i) = toℕ-inject₁-≢ i ℕ.suc-injective inject₁ℕ< : (i : Fin n) toℕ (inject₁ i) ℕ.< n inject₁ℕ< i rewrite toℕ-inject₁ i = toℕ<n i inject₁ℕ≤ : (i : Fin n) toℕ (inject₁ i) ℕ.≤ n inject₁ℕ≤ = ℕ.<⇒≤ inject₁ℕ< ≤̄⇒inject₁< : i j inject₁ i < suc j ≤̄⇒inject₁< {i = i} i≤j rewrite sym (toℕ-inject₁ i) = s<s i≤j ℕ<⇒inject₁< : {i : Fin (ℕ.suc n)} {j : Fin n} j < i inject₁ j < i ℕ<⇒inject₁< {i = suc i} j≤i = ≤̄⇒inject₁< (ℕ.s≤s⁻¹ j≤i) i≤inject₁[j]⇒i≤1+j : i inject₁ j i suc j i≤inject₁[j]⇒i≤1+j {i = zero} _ = z≤n i≤inject₁[j]⇒i≤1+j {i = suc i} {j = suc j} i≤j = s≤s (ℕ.m≤n⇒m≤1+n (subst (toℕ i ℕ.≤_) (toℕ-inject₁ j) (ℕ.s≤s⁻¹ i≤j))) ------------------------------------------------------------------------ -- lower₁ ------------------------------------------------------------------------ toℕ-lower₁ : i (p : n toℕ i) toℕ (lower₁ i p) toℕ i toℕ-lower₁ {ℕ.zero} zero p = contradiction refl p toℕ-lower₁ {ℕ.suc m} zero p = refl toℕ-lower₁ {ℕ.suc m} (suc i) p = cong ℕ.suc (toℕ-lower₁ i (p cong ℕ.suc)) lower₁-injective : {n≢i : n toℕ i} {n≢j : n toℕ j} lower₁ i n≢i lower₁ j n≢j i j lower₁-injective {zero} {zero} {_} {n≢i} {_} _ = contradiction refl n≢i lower₁-injective {zero} {_} {zero} {_} {n≢j} _ = contradiction refl n≢j lower₁-injective {suc n} {zero} {zero} {_} {_} refl = refl lower₁-injective {suc n} {suc i} {suc j} {n≢i} {n≢j} eq = cong suc (lower₁-injective (suc-injective eq)) ------------------------------------------------------------------------ -- inject₁ and lower₁ inject₁-lower₁ : (i : Fin (suc n)) (n≢i : n toℕ i) inject₁ (lower₁ i n≢i) i inject₁-lower₁ {zero} zero 0≢0 = contradiction refl 0≢0 inject₁-lower₁ {suc n} zero _ = refl inject₁-lower₁ {suc n} (suc i) n+1≢i+1 = cong suc (inject₁-lower₁ i (n+1≢i+1 cong suc)) lower₁-inject₁′ : (i : Fin n) (n≢i : n toℕ (inject₁ i)) lower₁ (inject₁ i) n≢i i lower₁-inject₁′ zero _ = refl lower₁-inject₁′ (suc i) n+1≢i+1 = cong suc (lower₁-inject₁′ i (n+1≢i+1 cong suc)) lower₁-inject₁ : (i : Fin n) lower₁ (inject₁ i) (toℕ-inject₁-≢ i) i lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i) lower₁-irrelevant : (i : Fin (suc n)) (n≢i₁ n≢i₂ : n toℕ i) lower₁ i n≢i₁ lower₁ i n≢i₂ lower₁-irrelevant {zero} zero 0≢0 _ = contradiction refl 0≢0 lower₁-irrelevant {suc n} zero _ _ = refl lower₁-irrelevant {suc n} (suc i) _ _ = cong suc (lower₁-irrelevant i _ _) inject₁≡⇒lower₁≡ : {i : Fin n} {j : Fin (ℕ.suc n)} (n≢j : n toℕ j) inject₁ i j lower₁ j n≢j i inject₁≡⇒lower₁≡ n≢j i≡j = inject₁-injective (trans (inject₁-lower₁ _ n≢j) (sym i≡j)) ------------------------------------------------------------------------ -- inject≤ ------------------------------------------------------------------------ toℕ-inject≤ : i .(m≤n : m ℕ.≤ n) toℕ (inject≤ i m≤n) toℕ i toℕ-inject≤ {_} {suc n} zero _ = refl toℕ-inject≤ {_} {suc n} (suc i) _ = cong suc (toℕ-inject≤ i _) inject≤-refl : i .(n≤n : n ℕ.≤ n) inject≤ i n≤n i inject≤-refl {suc n} zero _ = refl inject≤-refl {suc n} (suc i) _ = cong suc (inject≤-refl i _) inject≤-idempotent : (i : Fin m) .(m≤n : m ℕ.≤ n) .(n≤o : n ℕ.≤ o) .(m≤o : m ℕ.≤ o) inject≤ (inject≤ i m≤n) n≤o inject≤ i m≤o inject≤-idempotent {_} {suc n} {suc o} zero _ _ _ = refl inject≤-idempotent {_} {suc n} {suc o} (suc i) _ _ _ = cong suc (inject≤-idempotent i _ _ _) inject≤-trans : (i : Fin m) .(m≤n : m ℕ.≤ n) .(n≤o : n ℕ.≤ o) inject≤ (inject≤ i m≤n) n≤o inject≤ i (ℕ.≤-trans m≤n n≤o) inject≤-trans i _ _ = inject≤-idempotent i _ _ _ inject≤-injective : .(m≤n m≤n′ : m ℕ.≤ n) i j inject≤ i m≤n inject≤ j m≤n′ i j inject≤-injective {n = suc _} _ _ zero zero eq = refl inject≤-injective {n = suc _} _ _ (suc i) (suc j) eq = cong suc (inject≤-injective _ _ i j (suc-injective eq)) inject≤-irrelevant : .(m≤n m≤n′ : m ℕ.≤ n) i inject≤ i m≤n inject≤ i m≤n′ inject≤-irrelevant _ _ i = refl ------------------------------------------------------------------------ -- pred ------------------------------------------------------------------------ pred< : (i : Fin (suc n)) i zero pred i < i pred< zero i≢0 = contradiction refl i≢0 pred< (suc i) _ = ≤̄⇒inject₁< ℕ.≤-refl ------------------------------------------------------------------------ -- splitAt ------------------------------------------------------------------------ -- Fin (m + n) ↔ Fin m ⊎ Fin n splitAt-↑ˡ : m i n splitAt m (i ↑ˡ n) inj₁ i splitAt-↑ˡ (suc m) zero n = refl splitAt-↑ˡ (suc m) (suc i) n rewrite splitAt-↑ˡ m i n = refl splitAt⁻¹-↑ˡ : {m} {n} {i} {j} splitAt m {n} i inj₁ j j ↑ˡ n i splitAt⁻¹-↑ˡ {suc m} {n} {0F} {.0F} refl = refl splitAt⁻¹-↑ˡ {suc m} {n} {suc i} {j} eq with inj₁ ksplitAt m i in splitAt[m][i]≡inj₁[j] with refleq = cong suc (splitAt⁻¹-↑ˡ {i = i} {j = k} splitAt[m][i]≡inj₁[j]) splitAt-↑ʳ : m n i splitAt m (m ↑ʳ i) inj₂ {B = Fin n} i splitAt-↑ʳ zero n i = refl splitAt-↑ʳ (suc m) n i rewrite splitAt-↑ʳ m n i = refl splitAt⁻¹-↑ʳ : {m} {n} {i} {j} splitAt m {n} i inj₂ j m ↑ʳ j i splitAt⁻¹-↑ʳ {zero} {n} {i} {j} refl = refl splitAt⁻¹-↑ʳ {suc m} {n} {suc i} {j} eq with inj₂ ksplitAt m i in splitAt[m][i]≡inj₂[k] with refleq = cong suc (splitAt⁻¹-↑ʳ {i = i} {j = k} splitAt[m][i]≡inj₂[k]) splitAt-join : m n i splitAt m (join m n i) i splitAt-join m n (inj₁ x) = splitAt-↑ˡ m x n splitAt-join m n (inj₂ y) = splitAt-↑ʳ m n y join-splitAt : m n i join m n (splitAt m i) i join-splitAt zero n i = refl join-splitAt (suc m) n zero = refl join-splitAt (suc m) n (suc i) = begin [ _↑ˡ n , (suc m) ↑ʳ_ ]′ (splitAt (suc m) (suc i)) ≡⟨ [,]-map (splitAt m i) [ suc (_↑ˡ n) , suc (m ↑ʳ_) ]′ (splitAt m i) ≡⟨ [,]-∘ suc (splitAt m i) suc ([ _↑ˡ n , m ↑ʳ_ ]′ (splitAt m i)) ≡⟨ cong suc (join-splitAt m n i) suc i where open ≡-Reasoning -- splitAt "m" "i" ≡ inj₁ "i" if i < m splitAt-< : m {n} (i : Fin (m ℕ.+ n)) .(i<m : toℕ i ℕ.< m) splitAt m i inj₁ (fromℕ< i<m) splitAt-< (suc m) zero _ = refl splitAt-< (suc m) (suc i) i<m = cong (Sum.map suc id) (splitAt-< m i (ℕ.s<s⁻¹ i<m)) -- splitAt "m" "i" ≡ inj₂ "i - m" if i ≥ m splitAt-≥ : m {n} (i : Fin (m ℕ.+ n)) .(i≥m : toℕ i ℕ.≥ m) splitAt m i inj₂ (reduce≥ i i≥m) splitAt-≥ zero i _ = refl splitAt-≥ (suc m) (suc i) i≥m = cong (Sum.map suc id) (splitAt-≥ m i (ℕ.s≤s⁻¹ i≥m)) ------------------------------------------------------------------------ -- Bundles +↔⊎ : Fin (m ℕ.+ n) (Fin m Fin n) +↔⊎ {m} {n} = mk↔ₛ′ (splitAt m {n}) (join m n) (splitAt-join m n) (join-splitAt m n) ------------------------------------------------------------------------ -- remQuot ------------------------------------------------------------------------ -- Fin (m * n) ↔ Fin m × Fin n remQuot-combine : {n k} (i : Fin n) j remQuot k (combine i j) (i , j) remQuot-combine {suc n} {k} zero j rewrite splitAt-↑ˡ k j (n ℕ.* k) = refl remQuot-combine {suc n} {k} (suc i) j rewrite splitAt-↑ʳ k (n ℕ.* k) (combine i j) = cong (Product.map₁ suc) (remQuot-combine i j) combine-remQuot : {n} k (i : Fin (n ℕ.* k)) uncurry combine (remQuot {n} k i) i combine-remQuot {suc n} k i with splitAt k i in eq ... | inj₁ j = begin join k (n ℕ.* k) (inj₁ j) ≡⟨ cong (join k (n ℕ.* k)) eq join k (n ℕ.* k) (splitAt k i) ≡⟨ join-splitAt k (n ℕ.* k) i i where open ≡-Reasoning ... | inj₂ j = begin k ↑ʳ (uncurry combine (remQuot {n} k j)) ≡⟨ cong (k ↑ʳ_) (combine-remQuot {n} k j) join k (n ℕ.* k) (inj₂ j) ≡⟨ cong (join k (n ℕ.* k)) eq join k (n ℕ.* k) (splitAt k i) ≡⟨ join-splitAt k (n ℕ.* k) i i where open ≡-Reasoning toℕ-combine : (i : Fin m) (j : Fin n) toℕ (combine i j) n ℕ.* toℕ i ℕ.+ toℕ j toℕ-combine {suc m} {n} i@0F j = begin toℕ (combine i j) ≡⟨⟩ toℕ (j ↑ˡ (m ℕ.* n)) ≡⟨ toℕ-↑ˡ j (m ℕ.* n) toℕ j ≡⟨⟩ 0 ℕ.+ toℕ j ≡⟨ cong (ℕ._+ toℕ j) (ℕ.*-zeroʳ n) n ℕ.* toℕ i ℕ.+ toℕ j where open ≡-Reasoning toℕ-combine {suc m} {n} (suc i) j = begin toℕ (combine (suc i) j) ≡⟨⟩ toℕ (n ↑ʳ combine i j) ≡⟨ toℕ-↑ʳ n (combine i j) n ℕ.+ toℕ (combine i j) ≡⟨ cong (n ℕ.+_) (toℕ-combine i j) n ℕ.+ (n ℕ.* toℕ i ℕ.+ toℕ j) ≡⟨ ℕ.+-assoc n _ (toℕ j) n ℕ.+ n ℕ.* toℕ i ℕ.+ toℕ j ≡⟨ cong z z ℕ.+ n ℕ.* toℕ i ℕ.+ toℕ j) (ℕ.*-identityʳ n) n ℕ.* 1 ℕ.+ n ℕ.* toℕ i ℕ.+ toℕ j ≡⟨ cong (ℕ._+ toℕ j) (ℕ.*-distribˡ-+ n 1 (toℕ i) ) n ℕ.* toℕ (suc i) ℕ.+ toℕ j where open ≡-Reasoning combine-monoˡ-< : {i j : Fin m} (k l : Fin n) i < j combine i k < combine j l combine-monoˡ-< {m} {n} {i} {j} k l i<j = begin-strict toℕ (combine i k) ≡⟨ toℕ-combine i k n ℕ.* toℕ i ℕ.+ toℕ k <⟨ ℕ.+-monoʳ-< (n ℕ.* toℕ i) (toℕ<n k) n ℕ.* toℕ i ℕ.+ n ≡⟨ ℕ.+-comm _ n n ℕ.+ n ℕ.* toℕ i ≡⟨ cong (n ℕ.+_) (ℕ.*-comm n _) n ℕ.+ toℕ i ℕ.* n ≡⟨ ℕ.*-comm (suc (toℕ i)) n n ℕ.* suc (toℕ i) ≤⟨ ℕ.*-monoʳ-≤ n (toℕ-mono-< i<j) n ℕ.* toℕ j ≤⟨ ℕ.m≤m+n (n ℕ.* toℕ j) (toℕ l) n ℕ.* toℕ j ℕ.+ toℕ l ≡⟨ toℕ-combine j l toℕ (combine j l) where open ℕ.≤-Reasoning combine-injectiveˡ : (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) combine i j combine k l i k combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ with <-cmp i k ... | tri< i<k _ _ = contradiction cᵢⱼ≡cₖₗ (<⇒≢ (combine-monoˡ-< j l i<k)) ... | tri≈ _ i≡k _ = i≡k ... | tri> _ _ i>k = contradiction (sym cᵢⱼ≡cₖₗ) (<⇒≢ (combine-monoˡ-< l j i>k)) combine-injectiveʳ : (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) combine i j combine k l j l combine-injectiveʳ {m} {n} i j k l cᵢⱼ≡cₖₗ with reflcombine-injectiveˡ i j k l cᵢⱼ≡cₖₗ = toℕ-injective (ℕ.+-cancelˡ-≡ (n ℕ.* toℕ i) _ _ (begin n ℕ.* toℕ i ℕ.+ toℕ j ≡⟨ toℕ-combine i j toℕ (combine i j) ≡⟨ cong toℕ cᵢⱼ≡cₖₗ toℕ (combine i l) ≡⟨ toℕ-combine i l n ℕ.* toℕ i ℕ.+ toℕ l )) where open ≡-Reasoning combine-injective : (i : Fin m) (j : Fin n) (k : Fin m) (l : Fin n) combine i j combine k l i k × j l combine-injective i j k l cᵢⱼ≡cₖₗ = combine-injectiveˡ i j k l cᵢⱼ≡cₖₗ , combine-injectiveʳ i j k l cᵢⱼ≡cₖₗ combine-surjective : (i : Fin (m ℕ.* n)) ∃₂ λ j k combine j k i combine-surjective {m} {n} i with j , kremQuot {m} n i in eq = j , k , (begin combine j k ≡⟨ uncurry (cong₂ combine) (,-injective eq) uncurry combine (remQuot {m} n i) ≡⟨ combine-remQuot {m} n i i ) where open ≡-Reasoning ------------------------------------------------------------------------ -- Bundles *↔× : Fin (m ℕ.* n) (Fin m × Fin n) *↔× {m} {n} = mk↔ₛ′ (remQuot {m} n) (uncurry combine) (uncurry remQuot-combine) (combine-remQuot {m} n) ------------------------------------------------------------------------ -- fin→fun ------------------------------------------------------------------------ funToFin-finToFin : funToFin {m} {n} finToFun id funToFin-finToFin {zero} {n} zero = refl funToFin-finToFin {suc m} {n} k = begin combine (finToFun {n} {suc m} k zero) (funToFin (finToFun {n} {suc m} k suc)) ≡⟨⟩ combine (quotient {n} (n ^ m) k) (funToFin (finToFun {n} {m} (remainder {n} (n ^ m) k))) ≡⟨ cong (combine (quotient {n} (n ^ m) k)) (funToFin-finToFin {m} (remainder {n} (n ^ m) k)) combine (quotient {n} (n ^ m) k) (remainder {n} (n ^ m) k) ≡⟨⟩ uncurry combine (remQuot {n} (n ^ m) k) ≡⟨ combine-remQuot {n = n} (n ^ m) k k where open ≡-Reasoning finToFun-funToFin : (f : Fin m Fin n) finToFun (funToFin f) f finToFun-funToFin {suc m} {n} f zero = begin quotient (n ^ m) (combine (f zero) (funToFin (f suc))) ≡⟨ cong proj₁ (remQuot-combine _ _) proj₁ (f zero , funToFin (f suc)) ≡⟨⟩ f zero where open ≡-Reasoning finToFun-funToFin {suc m} {n} f (suc i) = begin finToFun (remainder {n} (n ^ m) (combine (f zero) (funToFin (f suc)))) i ≡⟨ cong rq finToFun (proj₂ rq) i) (remQuot-combine {n} _ _) finToFun (proj₂ (f zero , funToFin (f suc))) i ≡⟨⟩ finToFun (funToFin (f suc)) i ≡⟨ finToFun-funToFin (f suc) i (f suc) i ≡⟨⟩ f (suc i) where open ≡-Reasoning ------------------------------------------------------------------------ -- Bundles ^↔→ : Extensionality _ _ Fin (m ^ n) (Fin n Fin m) ^↔→ {m} {n} ext = mk↔ₛ′ finToFun funToFin (ext finToFun-funToFin) (funToFin-finToFin {n} {m}) ------------------------------------------------------------------------ -- lift ------------------------------------------------------------------------ lift-injective : (f : Fin m Fin n) Injective _≡_ _≡_ f k Injective _≡_ _≡_ (lift k f) lift-injective f inj zero {_} {_} eq = inj eq lift-injective f inj (suc k) {zero} {zero} eq = refl lift-injective f inj (suc k) {suc _} {suc _} eq = cong suc (lift-injective f inj k (suc-injective eq)) ------------------------------------------------------------------------ -- pred ------------------------------------------------------------------------ <⇒≤pred : i < j i pred j <⇒≤pred {i = zero} {j = suc j} z<s = z≤n <⇒≤pred {i = suc i} {j = suc j} (s<s i<j) rewrite toℕ-inject₁ j = i<j ------------------------------------------------------------------------ -- _ℕ-_ ------------------------------------------------------------------------ toℕ‿ℕ- : n i toℕ (n ℕ- i) n toℕ i toℕ‿ℕ- n zero = toℕ-fromℕ n toℕ‿ℕ- (suc n) (suc i) = toℕ‿ℕ- n i ------------------------------------------------------------------------ -- _ℕ-ℕ_ ------------------------------------------------------------------------ ℕ-ℕ≡toℕ‿ℕ- : n i n ℕ-ℕ i toℕ (n ℕ- i) ℕ-ℕ≡toℕ‿ℕ- n zero = sym (toℕ-fromℕ n) ℕ-ℕ≡toℕ‿ℕ- (suc n) (suc i) = ℕ-ℕ≡toℕ‿ℕ- n i nℕ-ℕi≤n : n i n ℕ-ℕ i ℕ.≤ n nℕ-ℕi≤n n zero = ℕ.≤-refl nℕ-ℕi≤n (suc n) (suc i) = begin n ℕ-ℕ i ≤⟨ nℕ-ℕi≤n n i n ≤⟨ ℕ.n≤1+n n suc n where open ℕ.≤-Reasoning ------------------------------------------------------------------------ -- punchIn ------------------------------------------------------------------------ punchIn-injective : i (j k : Fin n) punchIn i j punchIn i k j k punchIn-injective zero _ _ refl = refl punchIn-injective (suc i) zero zero _ = refl punchIn-injective (suc i) (suc j) (suc k) ↑j+1≡↑k+1 = cong suc (punchIn-injective i j k (suc-injective ↑j+1≡↑k+1)) punchInᵢ≢i : i (j : Fin n) punchIn i j i punchInᵢ≢i (suc i) (suc j) = punchInᵢ≢i i j suc-injective ------------------------------------------------------------------------ -- punchOut ------------------------------------------------------------------------ -- A version of 'cong' for 'punchOut' in which the inequality argument -- can be changed out arbitrarily (reflecting the proof-irrelevance of -- that argument). punchOut-cong : (i : Fin (suc n)) {j k} {i≢j : i j} {i≢k : i k} j k punchOut i≢j punchOut i≢k punchOut-cong {_} zero {zero} {i≢j = 0≢0} = contradiction refl 0≢0 punchOut-cong {_} zero {suc j} {zero} {i≢k = 0≢0} = contradiction refl 0≢0 punchOut-cong {_} zero {suc j} {suc k} = suc-injective punchOut-cong {suc n} (suc i) {zero} {zero} _ = refl punchOut-cong {suc n} (suc i) {suc j} {suc k} = cong suc punchOut-cong i suc-injective -- An alternative to 'punchOut-cong' in the which the new inequality -- argument is specific. Useful for enabling the omission of that -- argument during equational reasoning. punchOut-cong′ : (i : Fin (suc n)) {j k} {p : i j} (q : j k) punchOut p punchOut (p sym trans q sym) punchOut-cong′ i q = punchOut-cong i q punchOut-injective : {i j k : Fin (suc n)} (i≢j : i j) (i≢k : i k) punchOut i≢j punchOut i≢k j k punchOut-injective {_} {zero} {zero} {_} 0≢0 _ _ = contradiction refl 0≢0 punchOut-injective {_} {zero} {_} {zero} _ 0≢0 _ = contradiction refl 0≢0 punchOut-injective {_} {zero} {suc j} {suc k} _ _ pⱼ≡pₖ = cong suc pⱼ≡pₖ punchOut-injective {suc n} {suc i} {zero} {zero} _ _ _ = refl punchOut-injective {suc n} {suc i} {suc j} {suc k} i≢j i≢k pⱼ≡pₖ = cong suc (punchOut-injective (i≢j cong suc) (i≢k cong suc) (suc-injective pⱼ≡pₖ)) punchIn-punchOut : {i j : Fin (suc n)} (i≢j : i j) punchIn i (punchOut i≢j) j punchIn-punchOut {_} {zero} {zero} 0≢0 = contradiction refl 0≢0 punchIn-punchOut {_} {zero} {suc j} _ = refl punchIn-punchOut {suc m} {suc i} {zero} i≢j = refl punchIn-punchOut {suc m} {suc i} {suc j} i≢j = cong suc (punchIn-punchOut (i≢j cong suc)) punchOut-punchIn : i {j : Fin n} punchOut {i = i} {j = punchIn i j} (punchInᵢ≢i i j sym) j punchOut-punchIn zero {j} = refl punchOut-punchIn (suc i) {zero} = refl punchOut-punchIn (suc i) {suc j} = cong suc (begin punchOut (punchInᵢ≢i i j suc-injective sym cong suc) ≡⟨ punchOut-cong i refl punchOut (punchInᵢ≢i i j sym) ≡⟨ punchOut-punchIn i j ) where open ≡-Reasoning ------------------------------------------------------------------------ -- pinch ------------------------------------------------------------------------ pinch-surjective : (i : Fin n) Surjective _≡_ _≡_ (pinch i) pinch-surjective _ zero = zero , λ { refl refl } pinch-surjective zero (suc j) = suc (suc j) , λ { refl refl } pinch-surjective (suc i) (suc j) = map suc {f refl cong suc (f refl)}) (pinch-surjective i j) pinch-mono-≤ : (i : Fin n) (pinch i) Preserves _≤_ _≤_ pinch-mono-≤ 0F {0F} {k} 0≤n = z≤n pinch-mono-≤ 0F {suc j} {suc k} j≤k = ℕ.s≤s⁻¹ j≤k pinch-mono-≤ (suc i) {0F} {k} 0≤n = z≤n pinch-mono-≤ (suc i) {suc j} {suc k} j≤k = s≤s (pinch-mono-≤ i (ℕ.s≤s⁻¹ j≤k)) pinch-injective : {i : Fin n} {j k : Fin (ℕ.suc n)} suc i j suc i k pinch i j pinch i k j k pinch-injective {i = i} {zero} {zero} _ _ _ = refl pinch-injective {i = zero} {zero} {suc k} _ 1+i≢k eq = contradiction (cong suc eq) 1+i≢k pinch-injective {i = zero} {suc j} {zero} 1+i≢j _ eq = contradiction (cong suc (sym eq)) 1+i≢j pinch-injective {i = zero} {suc j} {suc k} _ _ eq = cong suc eq pinch-injective {i = suc i} {suc j} {suc k} 1+i≢j 1+i≢k eq = cong suc (pinch-injective (1+i≢j cong suc) (1+i≢k cong suc) (suc-injective eq)) ------------------------------------------------------------------------ -- Quantification ------------------------------------------------------------------------ module _ {p} {P : Pred (Fin (suc n)) p} where ∀-cons : P zero Π[ P suc ] Π[ P ] ∀-cons z s zero = z ∀-cons z s (suc i) = s i ∀-cons-⇔ : (P zero × Π[ P suc ]) Π[ P ] ∀-cons-⇔ = mk⇔ (uncurry ∀-cons) < _$ zero , _∘ suc > ∃-here : P zero ∃⟨ P ∃-here = zero ,_ ∃-there : ∃⟨ P suc ∃⟨ P ∃-there = map suc id ∃-toSum : ∃⟨ P P zero ∃⟨ P suc ∃-toSum ( zero , P₀ ) = inj₁ P₀ ∃-toSum (suc f , P₁₊) = inj₂ (f , P₁₊) ⊎⇔∃ : (P zero ∃⟨ P suc ) ∃⟨ P ⊎⇔∃ = mk⇔ [ ∃-here , ∃-there ] ∃-toSum decFinSubset : {p q} {P : Pred (Fin n) p} {Q : Pred (Fin n) q} Decidable Q (∀ {i} Q i Dec (P i)) Dec (Q P) decFinSubset {zero} {_} {_} Q? P? = yes λ {} decFinSubset {suc n} {P = P} {Q} Q? P? with Q? zero | ∀-cons {P = λ x Q x P x} ... | false because [¬Q0] | cons = map′ f {x} cons (⊥-elim invert [¬Q0]) x f {x}) x) f {x} f {suc x}) (decFinSubset (Q? suc) P?) ... | true because [Q0] | cons = map′ (uncurry λ P0 rec {x} cons _ P0) x rec {x}) x) < _$ invert [Q0] , f {x} f {suc x}) > (P? (invert [Q0]) ×-dec decFinSubset (Q? suc) P?) any? : {p} {P : Pred (Fin n) p} Decidable P Dec ( P) any? {zero} {P = _} P? = no λ { (() , _) } any? {suc n} {P = P} P? = Dec.map ⊎⇔∃ (P? zero ⊎-dec any? (P? suc)) all? : {p} {P : Pred (Fin n) p} Decidable P Dec (∀ f P f) all? P? = map′ ∀p f ∀p tt) ∀p {x} _ ∀p x) (decFinSubset U? {f} _ P? f)) private -- A nice computational property of `all?`: -- The boolean component of the result is exactly the -- obvious fold of boolean tests (`foldr _∧_ true`). note : {p} {P : Pred (Fin 3) p} (P? : Decidable P) λ z Dec.does (all? P?) z note P? = Dec.does (P? 0F) Dec.does (P? 1F) Dec.does (P? 2F) true , refl -- If a decidable predicate P over a finite set is sometimes false, -- then we can find the smallest value for which this is the case. ¬∀⟶∃¬-smallest : n {p} (P : Pred (Fin n) p) Decidable P ¬ (∀ i P i) λ i ¬ P i × ((j : Fin′ i) P (inject j)) ¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P ¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero ... | false because [¬P₀] = (zero , invert [¬P₀] , λ ()) ... | true because [P₀] = map suc (map id (∀-cons (invert [P₀]))) (¬∀⟶∃¬-smallest n (P suc) (P? suc) (¬∀P (∀-cons (invert [P₀])))) -- When P is a decidable predicate over a finite set the following -- lemma can be proved. ¬∀⟶∃¬ : n {p} (P : Pred (Fin n) p) Decidable P ¬ (∀ i P i) ( λ i ¬ P i) ¬∀⟶∃¬ n P P? ¬P = map id proj₁ (¬∀⟶∃¬-smallest n P P? ¬P) ------------------------------------------------------------------------ -- Properties of functions to and from Fin ------------------------------------------------------------------------ -- The pigeonhole principle. pigeonhole : m ℕ.< n (f : Fin n Fin m) ∃₂ λ i j i < j × f i f j pigeonhole z<s f = contradiction (f zero) λ() pigeonhole (s<s m<n@(s≤s _)) f with any? k f zero f (suc k)) ... | yes (j , f₀≡fⱼ) = zero , suc j , z<s , f₀≡fⱼ ... | no f₀≢fₖ with i , j , i<j , fᵢ≡fⱼpigeonhole m<n j punchOut (f₀≢fₖ (j ,_ ))) = suc i , suc j , s<s i<j , punchOut-injective (f₀≢fₖ (i ,_)) _ fᵢ≡fⱼ injective⇒≤ : {f : Fin m Fin n} Injective _≡_ _≡_ f m ℕ.≤ n injective⇒≤ {zero} {_} {f} _ = z≤n injective⇒≤ {suc _} {zero} {f} _ = contradiction (f zero) ¬Fin0 injective⇒≤ {suc _} {suc _} {f} inj = s≤s (injective⇒≤ eq suc-injective (inj (punchOut-injective (contraInjective inj 0≢1+n) (contraInjective inj 0≢1+n) eq)))) <⇒notInjective : {f : Fin m Fin n} n ℕ.< m ¬ (Injective _≡_ _≡_ f) <⇒notInjective n<m inj = ℕ.≤⇒≯ (injective⇒≤ inj) n<m ℕ→Fin-notInjective : (f : Fin n) ¬ (Injective _≡_ _≡_ f) ℕ→Fin-notInjective f inj = ℕ.<-irrefl refl (injective⇒≤ (Comp.injective _≡_ _≡_ _≡_ toℕ-injective inj)) -- Cantor-Schröder-Bernstein for finite sets cantor-schröder-bernstein : {f : Fin m Fin n} {g : Fin n Fin m} Injective _≡_ _≡_ f Injective _≡_ _≡_ g m n cantor-schröder-bernstein f-inj g-inj = ℕ.≤-antisym (injective⇒≤ f-inj) (injective⇒≤ g-inj) ------------------------------------------------------------------------ -- Effectful ------------------------------------------------------------------------ module _ {f} {F : Set f Set f} (RA : RawApplicative F) where open RawApplicative RA sequence : {n} {P : Pred (Fin n) f} (∀ i F (P i)) F (∀ i P i) sequence {zero} ∀iPi = pure λ() sequence {suc n} ∀iPi = ∀-cons <$> ∀iPi zero <*> sequence (∀iPi suc) module _ {f} {F : Set f Set f} (RF : RawFunctor F) where open RawFunctor RF sequence⁻¹ : {A : Set f} {P : Pred A f} F (∀ i P i) (∀ i F (P i)) sequence⁻¹ F∀iPi i = f f i) <$> F∀iPi ------------------------------------------------------------------------ -- If there is an injection from a type A to a finite set, then the type -- has decidable equality. module _ {} {S : Setoid a } (inj : Injection S (≡-setoid n)) where open Setoid S inj⇒≟ : B.Decidable _≈_ inj⇒≟ = Dec.via-injection inj _≟_ inj⇒decSetoid : DecSetoid a inj⇒decSetoid = record { isDecEquivalence = record { isEquivalence = isEquivalence ; _≟_ = inj⇒≟ } } ------------------------------------------------------------------------ -- Opposite ------------------------------------------------------------------------ opposite-prop : (i : Fin n) toℕ (opposite i) n suc (toℕ i) opposite-prop {suc n} zero = toℕ-fromℕ n opposite-prop {suc n} (suc i) = begin toℕ (inject₁ (opposite i)) ≡⟨ toℕ-inject₁ (opposite i) toℕ (opposite i) ≡⟨ opposite-prop i n suc (toℕ i) where open ≡-Reasoning opposite-involutive : Involutive {A = Fin n} _≡_ opposite opposite-involutive {suc n} i = toℕ-injective (begin toℕ (opposite (opposite i)) ≡⟨ opposite-prop (opposite i) n (toℕ (opposite i)) ≡⟨ cong (n ∸_) (opposite-prop i) n (n (toℕ i)) ≡⟨ ℕ.m∸[m∸n]≡n (toℕ≤pred[n] i) toℕ i ) where open ≡-Reasoning opposite-suc : (i : Fin n) toℕ (opposite (suc i)) toℕ (opposite i) opposite-suc {n} i = begin toℕ (opposite (suc i)) ≡⟨ opposite-prop (suc i) suc n suc (toℕ (suc i)) ≡⟨⟩ n toℕ (suc i) ≡⟨⟩ n suc (toℕ i) ≡⟨ opposite-prop i toℕ (opposite i) where open ≡-Reasoning ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 1.5 inject+-raise-splitAt = join-splitAt {-# WARNING_ON_USAGE inject+-raise-splitAt "Warning: inject+-raise-splitAt was deprecated in v1.5. Please use join-splitAt instead." #-} -- Version 2.0 toℕ-raise = toℕ-↑ʳ {-# WARNING_ON_USAGE toℕ-raise "Warning: toℕ-raise was deprecated in v2.0. Please use toℕ-↑ʳ instead." #-} toℕ-inject+ : {m} n (i : Fin m) toℕ i toℕ (i ↑ˡ n) toℕ-inject+ n i = sym (toℕ-↑ˡ i n) {-# WARNING_ON_USAGE toℕ-inject+ "Warning: toℕ-inject+ was deprecated in v2.0. Please use toℕ-↑ˡ instead. NB argument order has been flipped: the left-hand argument is the Fin m the right-hand is the Nat index increment." #-} splitAt-inject+ : m n i splitAt m (i ↑ˡ n) inj₁ i splitAt-inject+ m n i = splitAt-↑ˡ m i n {-# WARNING_ON_USAGE splitAt-inject+ "Warning: splitAt-inject+ was deprecated in v2.0. Please use splitAt-↑ˡ instead. NB argument order has been flipped." #-} splitAt-raise : m n i splitAt m (m ↑ʳ i) inj₂ {B = Fin n} i splitAt-raise = splitAt-↑ʳ {-# WARNING_ON_USAGE splitAt-raise "Warning: splitAt-raise was deprecated in v2.0. Please use splitAt-↑ʳ instead." #-} Fin0↔⊥ : Fin 0 Fin0↔⊥ = 0↔⊥ {-# WARNING_ON_USAGE Fin0↔⊥ "Warning: Fin0↔⊥ was deprecated in v2.0. Please use 0↔⊥ instead." #-} eq? : A Fin n DecidableEquality A eq? = inj⇒≟ {-# WARNING_ON_USAGE eq? "Warning: eq? was deprecated in v2.0. Please use inj⇒≟ instead." #-} private z≺s : {n} zero suc n z≺s = _ ≻toℕ zero s≺s : {m n} m n suc m suc n s≺s (n ≻toℕ i) = (suc n) ≻toℕ (suc i) <⇒≺ : ℕ._<_ _≺_ <⇒≺ {zero} z<s = z≺s <⇒≺ {suc m} (s<s lt) = s≺s (<⇒≺ lt) ≺⇒< : _≺_ ℕ._<_ ≺⇒< (n ≻toℕ i) = toℕ<n i ≺⇒<′ : _≺_ ℕ._<′_ ≺⇒<′ lt = ℕ.<⇒<′ (≺⇒< lt) {-# WARNING_ON_USAGE ≺⇒<′ "Warning: ≺⇒<′ was deprecated in v2.0. Please use <⇒<′ instead." #-} <′⇒≺ : ℕ._<′_ _≺_ <′⇒≺ lt = <⇒≺ (ℕ.<′⇒< lt) {-# WARNING_ON_USAGE <′⇒≺ "Warning: <′⇒≺ was deprecated in v2.0. Please use <′⇒< instead." #-}