------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles for metrics ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Function.Metric`. {-# OPTIONS --cubical-compatible --safe #-} module Function.Metric.Bundles where open import Algebra.Core using (Op₂) open import Level using (Level; suc; _⊔_) open import Relation.Binary.Core using (Rel) open import Function.Metric.Structures open import Function.Metric.Core ------------------------------------------------------------------------ -- ProtoMetric record ProtoMetric (a i ℓ₁ ℓ₂ ℓ₃ : Level) : Set (suc (a i ℓ₁ ℓ₂ ℓ₃)) where infix 4 _≈_ _≈ᵢ_ _≤_ field Carrier : Set a Image : Set i _≈_ : Rel Carrier ℓ₁ _≈ᵢ_ : Rel Image ℓ₂ _≤_ : Rel Image ℓ₃ 0# : Image d : DistanceFunction Carrier Image isProtoMetric : IsProtoMetric _≈_ _≈ᵢ_ _≤_ 0# d open IsProtoMetric isProtoMetric public ------------------------------------------------------------------------ -- PreMetric record PreMetric (a i ℓ₁ ℓ₂ ℓ₃ : Level) : Set (suc (a i ℓ₁ ℓ₂ ℓ₃)) where infix 4 _≈_ _≈ᵢ_ _≤_ field Carrier : Set a Image : Set i _≈_ : Rel Carrier ℓ₁ _≈ᵢ_ : Rel Image ℓ₂ _≤_ : Rel Image ℓ₃ 0# : Image d : DistanceFunction Carrier Image isPreMetric : IsPreMetric _≈_ _≈ᵢ_ _≤_ 0# d open IsPreMetric isPreMetric public protoMetric : ProtoMetric a i ℓ₁ ℓ₂ ℓ₃ protoMetric = record { isProtoMetric = isProtoMetric } ------------------------------------------------------------------------ -- QuasiSemiMetric record QuasiSemiMetric (a i ℓ₁ ℓ₂ ℓ₃ : Level) : Set (suc (a i ℓ₁ ℓ₂ ℓ₃)) where infix 4 _≈_ _≈ᵢ_ _≤_ field Carrier : Set a Image : Set i _≈_ : Rel Carrier ℓ₁ _≈ᵢ_ : Rel Image ℓ₂ _≤_ : Rel Image ℓ₃ 0# : Image d : DistanceFunction Carrier Image isQuasiSemiMetric : IsQuasiSemiMetric _≈_ _≈ᵢ_ _≤_ 0# d open IsQuasiSemiMetric isQuasiSemiMetric public preMetric : PreMetric a i ℓ₁ ℓ₂ ℓ₃ preMetric = record { isPreMetric = isPreMetric } open PreMetric preMetric public using (protoMetric) ------------------------------------------------------------------------ -- SemiMetric record SemiMetric (a i ℓ₁ ℓ₂ ℓ₃ : Level) : Set (suc (a i ℓ₁ ℓ₂ ℓ₃)) where infix 4 _≈_ _≈ᵢ_ _≤_ field Carrier : Set a Image : Set i _≈_ : Rel Carrier ℓ₁ _≈ᵢ_ : Rel Image ℓ₂ _≤_ : Rel Image ℓ₃ 0# : Image d : DistanceFunction Carrier Image isSemiMetric : IsSemiMetric _≈_ _≈ᵢ_ _≤_ 0# d open IsSemiMetric isSemiMetric public quasiSemiMetric : QuasiSemiMetric a i ℓ₁ ℓ₂ ℓ₃ quasiSemiMetric = record { isQuasiSemiMetric = isQuasiSemiMetric } open QuasiSemiMetric quasiSemiMetric public using (protoMetric; preMetric) ------------------------------------------------------------------------ -- GeneralMetric -- Note that this package is not necessarily a metric in the classical -- sense as there is no way to ensure that the _∙_ operator really -- represents addition. See `Function.Metric.Nat` and -- `Function.Metric.Rational` for more specialised `Metric` and -- `UltraMetric` packages. -- See the discussion accompanying the `IsGeneralMetric` structure for -- more details. record GeneralMetric (a i ℓ₁ ℓ₂ ℓ₃ : Level) : Set (suc (a i ℓ₁ ℓ₂ ℓ₃)) where infix 4 _≈_ _≈ᵢ_ _≤_ infixl 6 _∙_ field Carrier : Set a Image : Set i _≈_ : Rel Carrier ℓ₁ _≈ᵢ_ : Rel Image ℓ₂ _≤_ : Rel Image ℓ₃ 0# : Image _∙_ : Op₂ Image d : DistanceFunction Carrier Image isGeneralMetric : IsGeneralMetric _≈_ _≈ᵢ_ _≤_ 0# _∙_ d open IsGeneralMetric isGeneralMetric public semiMetric : SemiMetric a i ℓ₁ ℓ₂ ℓ₃ semiMetric = record { isSemiMetric = isSemiMetric } open SemiMetric semiMetric public using (protoMetric; preMetric; quasiSemiMetric)