------------------------------------------------------------------------ -- The Agda standard library -- -- Some metric structures (not packed up with sets, operations, etc.) ------------------------------------------------------------------------ -- The contents of this module should usually be accessed via -- `Function.Metric`. {-# OPTIONS --without-K --safe #-} open import Relation.Binary hiding (Symmetric) module Function.Metric.Structures {a i ℓ₁ ℓ₂ ℓ₃} {A : Set a} {I : Set i} (_≈ₐ_ : Rel A ℓ₁) (_≈ᵢ_ : Rel I ℓ₂) (_≤_ : Rel I ℓ₃) (0# : I) where open import Algebra.Core using (Op₂) open import Function.Metric.Core open import Function.Metric.Definitions open import Level using (_⊔_) ------------------------------------------------------------------------ -- Proto-metrics -- We do not insist that the ordering relation is total as otherwise -- we would exclude the real numbers. record IsProtoMetric (d : DistanceFunction A I) : Set (a i ℓ₁ ℓ₂ ℓ₃) where field isPartialOrder : IsPartialOrder _≈ᵢ_ _≤_ ≈-isEquivalence : IsEquivalence _≈ₐ_ cong : Congruent _≈ₐ_ _≈ᵢ_ d nonNegative : NonNegative _≤_ d 0# open IsPartialOrder isPartialOrder public renaming (module Eq to EqI) module EqC = IsEquivalence ≈-isEquivalence ------------------------------------------------------------------------ -- Pre-metrics record IsPreMetric (d : DistanceFunction A I) : Set (a i ℓ₁ ℓ₂ ℓ₃) where field isProtoMetric : IsProtoMetric d ≈⇒0 : Definite _≈ₐ_ _≈ᵢ_ d 0# open IsProtoMetric isProtoMetric public ------------------------------------------------------------------------ -- Quasi-semi-metrics record IsQuasiSemiMetric (d : DistanceFunction A I) : Set (a i ℓ₁ ℓ₂ ℓ₃) where field isPreMetric : IsPreMetric d 0⇒≈ : Indiscernable _≈ₐ_ _≈ᵢ_ d 0# open IsPreMetric isPreMetric public ------------------------------------------------------------------------ -- Semi-metrics record IsSemiMetric (d : DistanceFunction A I) : Set (a i ℓ₁ ℓ₂ ℓ₃) where field isQuasiSemiMetric : IsQuasiSemiMetric d sym : Symmetric _≈ᵢ_ d open IsQuasiSemiMetric isQuasiSemiMetric public ------------------------------------------------------------------------ -- General metrics -- A general metric obeys a generalised form of the triangle inequality. -- It can be specialised to a standard metric/ultrametric/inframetric -- etc. by providing the correct operator. -- -- Furthermore we do not assume that _∙_ & 0# form a monoid as -- associativity does not hold for p-relaxed metrics/p-inframetrics and -- the identity laws do not hold for ultrametrics over negative -- codomains. -- -- See "Properties of distance spaces with power triangle inequalities" -- by Daniel J. Greenhoe, 2016 (arXiv) record IsGeneralMetric (_∙_ : Op₂ I) (d : DistanceFunction A I) : Set (a i ℓ₁ ℓ₂ ℓ₃) where field isSemiMetric : IsSemiMetric d triangle : TriangleInequality _≤_ _∙_ d open IsSemiMetric isSemiMetric public