This is the [Base.Overture.Surjective][] module of the agda-algebras library.
{-# OPTIONS --without-K --exact-split --safe #-} module Base.Overture.Surjective where -- Imports from Agda and the Agda Standard Library -------------------------------- open import Agda.Primitive using ( _⊔_ ; Level ) renaming ( Set to Type ) open import Relation.Nullary using ( Dec ; yes ; no ) open import Data.Empty using (⊥-elim) open import Function using ( Surjective ; _∘_ ) open import Relation.Binary using ( Decidable ) open import Data.Product using ( _,_ ; Σ ; Σ-syntax ) renaming ( proj₁ to fst ; proj₂ to snd ) open import Axiom.UniquenessOfIdentityProofs using ( module Decidable⇒UIP ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; sym ; cong-app ; cong ; refl ) -- Imports from agda-algebras ----------------------------------------------------- open import Base.Overture.Preliminaries using ( _≈_ ; _∙_ ; transport ) open import Base.Overture.Inverses using ( Image_∋_ ; eq ; Inv ; InvIsInverseʳ ) private variable α β γ c ι : Level
A surjective function from A
to B
is a function f : A → B
such that for all b : B
there exists a : A
such that f a ≡ b
. In other words, the range and codomain of f
agree. The following types manifest this notion.
module _ {A : Type α}{B : Type β} where IsSurjective : (A → B) → Type (α ⊔ β) IsSurjective f = ∀ y → Image f ∋ y onto : Type (α ⊔ β) onto = Σ (A → B) IsSurjective IsSurjective→Surjective : (f : A → B) → IsSurjective f → Surjective{A = A} _≡_ _≡_ f IsSurjective→Surjective f fE y = imgfy→A (fE y) where imgfy→A : Image f ∋ y → Σ[ a ∈ A ] f a ≡ y imgfy→A (eq a p) = a , sym p Surjective→IsSurjective : (f : A → B) → Surjective{A = A} _≡_ _≡_ f → IsSurjective f Surjective→IsSurjective f fE y = eq (fst (fE y)) (sym (snd(fE y)))
With the next definition, we can represent a right-inverse of a surjective function.
SurjInv : (f : A → B) → IsSurjective f → B → A SurjInv f fE b = Inv f (fE b)
Thus, a right-inverse of f
is obtained by applying SurjInv
to f
and a proof of IsSurjective f
. Next we prove that this does indeed give the right-inverse.
module _ {A : Type α}{B : Type β} where SurjInvIsInverseʳ : (f : A → B)(fE : IsSurjective f) → ∀ b → f ((SurjInv f fE) b) ≡ b SurjInvIsInverseʳ f fE b = InvIsInverseʳ (fE b) -- composition law for epics epic-factor : {C : Type γ}(f : A → B)(g : A → C)(h : C → B) → f ≈ h ∘ g → IsSurjective f → IsSurjective h epic-factor f g h compId fe y = Goal where finv : B → A finv = SurjInv f fe ζ : y ≡ f (finv y) ζ = sym (SurjInvIsInverseʳ f fe y) η : y ≡ (h ∘ g) (finv y) η = ζ ∙ compId (finv y) Goal : Image h ∋ y Goal = eq (g (finv y)) η epic-factor-intensional : {C : Type γ}(f : A → B)(g : A → C)(h : C → B) → f ≡ h ∘ g → IsSurjective f → IsSurjective h epic-factor-intensional f g h compId fe y = Goal where finv : B → A finv = SurjInv f fe ζ : f (finv y) ≡ y ζ = SurjInvIsInverseʳ f fe y η : (h ∘ g) (finv y) ≡ y η = (cong-app (sym compId)(finv y)) ∙ ζ Goal : Image h ∋ y Goal = eq (g (finv y)) (sym η)
Later we will need the fact that the projection of an arbitrary product onto one (or any number) of its factors is surjective.
module _ {I : Set ι}(_≟_ : Decidable{A = I} _≡_) {B : I → Set β} (bs₀ : ∀ i → (B i)) where open Decidable⇒UIP _≟_ using ( ≡-irrelevant ) proj : (j : I) → (∀ i → (B i)) → (B j) proj j xs = xs j update : (∀ i → B i) → ((j , _) : Σ I B) → (∀ i → Dec (i ≡ j) → B i) update _ (_ , b) i (yes x) = transport B (sym x) b update bs _ i (no _) = bs i update-id : ∀{j b} → (c : Dec (j ≡ j)) → update bs₀ (j , b) j c ≡ b update-id {j}{b}(yes p) = cong (λ x → transport B x b)(≡-irrelevant (sym p) refl) update-id (no ¬p) = ⊥-elim (¬p refl) proj-is-onto : ∀{j} → Surjective{A = ∀ i → (B i)} _≡_ _≡_ (proj j) proj-is-onto {j} b = bs , pf where bs : (i : I) → B i bs i = update bs₀ (j , b) i (i ≟ j) pf : proj j bs ≡ b pf = update-id (j ≟ j) projIsOnto : ∀{j} → IsSurjective (proj j) projIsOnto {j} = Surjective→IsSurjective (proj j) proj-is-onto