↑ Top


Congruences of general structures

This is the Base.Structures.Congruences module of the Agda Universal Algebra Library.


{-# OPTIONS --without-K --exact-split --safe #-}

module Base.Structures.Congruences where

-- Imports from Agda and the Agda Standard Library --------------------------------------
open import Agda.Primitive  using () renaming ( Set  to Type )
open import Data.Product    using ( _,_ ; _×_ ; Σ-syntax )
                            renaming ( proj₁ to fst )
open import Function.Base   using ( _∘_ )
open import Level           using ( Level ; suc ; _⊔_ ; lower ; lift )

open import Relation.Binary.PropositionalEquality using ( _≡_ )

-- Imports from the Agda Universal Algebra Library --------------------------------------
open import Overture        using ( ∣_∣ )
open import Base.Relations  using ( _|:_ ; 0[_] ; Equivalence ; Quotient ; ⟪_⟫ )
                            using ( 0[_]Equivalence ; ⌞_⌟ ; ⟪_∼_⟫-elim ; _/_ )
open import Base.Equality   using ( swelldef )

open import Base.Structures.Basic  using ( signature ; structure ; sigl )
                                   using ( siglʳ ; compatible )
private variable
 𝓞₀ 𝓥₀ 𝓞₁ 𝓥₁ : Level
 𝐹 : signature 𝓞₀ 𝓥₀
 𝑅 : signature 𝓞₁ 𝓥₁
 α ρ : Level

open signature ; open structure

con :  {α ρ}  structure 𝐹 𝑅 {α}{ρ}  Type (sigl 𝐹  suc α  suc ρ)
con {α = α}{ρ} 𝑨 = Σ[ θ  Equivalence (carrier 𝑨){α  ρ} ] (compatible 𝑨  θ )

The zero congruence of a structure


0[_]compatible :  (𝑨 : structure 𝐹 𝑅 {α} {ρ})  swelldef (siglʳ 𝐹) α
                 (𝑓 : symbol 𝐹)  (op 𝑨) 𝑓 |: (0[ carrier 𝑨 ] {ρ})

0[ 𝑨 ]compatible wd 𝑓 {i}{j} ptws0  = lift γ
 where
 γ : ((op 𝑨) 𝑓) i  ((op 𝑨) 𝑓) j
 γ = wd ((op 𝑨) 𝑓) i j (lower  ptws0)

0con[_] : (𝑨 : structure 𝐹 𝑅 {α} {ρ})  swelldef (siglʳ 𝐹) α  con 𝑨
0con[ 𝑨 ] wd = 0[ carrier 𝑨 ]Equivalence , 0[ 𝑨 ]compatible wd

Quotient structures


_╱_  -- alias  (useful on when signature and universe parameters can be inferred)
 quotient : (𝑨 : structure 𝐹 𝑅 {α}{ρ})  con 𝑨  structure 𝐹 𝑅
quotient 𝑨 θ =
 record  { carrier = Quotient (carrier 𝑨)  θ      -- domain of quotient structure
         ; op = λ f b   ((op 𝑨) f)  i   b i )  {fst  θ } -- interp of operations
         ; rel = λ r x  ((rel 𝑨) r)  i   x i )   -- interpretation of relations
         }

_╱_ = quotient  -- (alias)

/≡-elim :  {𝑨 : structure 𝐹 𝑅 {α}{ρ}} ((θ , _ ) : con 𝑨){u v : carrier 𝑨}
           u  { θ }   v  { θ }   θ  u v

/≡-elim θ {u}{v} x =   u  v ⟫-elim{R =  θ } x

The zero congruence of a quotient structure


𝟎[_╱_] :  (𝑨 : structure 𝐹 𝑅 {α}{ρ}) (θ : con 𝑨)
         swelldef (siglʳ 𝐹)(suc (α  ρ))  con (𝑨  θ)

𝟎[ 𝑨  θ ] wd = 0con[ 𝑨  θ ] wd

← Base.Structures.Products Base.Structures.Homs →