------------------------------------------------------------------------ -- The Agda standard library -- -- Bundles for homogeneous binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via `Relation.Binary`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Bundles where open import Function.Base using (flip) open import Level using (Level; suc; _⊔_) open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Binary.Core using (Rel) open import Relation.Binary.Structures -- most of it ------------------------------------------------------------------------ -- Setoids ------------------------------------------------------------------------ record PartialSetoid a : Set (suc (a )) where infix 4 _≈_ field Carrier : Set a _≈_ : Rel Carrier isPartialEquivalence : IsPartialEquivalence _≈_ open IsPartialEquivalence isPartialEquivalence public infix 4 _≉_ _≉_ : Rel Carrier _ x y = ¬ (x y) record Setoid c : Set (suc (c )) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public using (refl; reflexive; isPartialEquivalence) partialSetoid : PartialSetoid c partialSetoid = record { isPartialEquivalence = isPartialEquivalence } open PartialSetoid partialSetoid public hiding (Carrier; _≈_; isPartialEquivalence) record DecSetoid c : Set (suc (c )) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier isDecEquivalence : IsDecEquivalence _≈_ open IsDecEquivalence isDecEquivalence public using (_≟_; isEquivalence) setoid : Setoid c setoid = record { isEquivalence = isEquivalence } open Setoid setoid public hiding (Carrier; _≈_; isEquivalence) ------------------------------------------------------------------------ -- Preorders ------------------------------------------------------------------------ record Preorder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _≲_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≲_ : Rel Carrier ℓ₂ -- The relation. isPreorder : IsPreorder _≈_ _≲_ open IsPreorder isPreorder public hiding (module Eq) module Eq where setoid : Setoid c ℓ₁ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public infix 4 _⋦_ _⋦_ : Rel Carrier _ x y = ¬ (x y) infix 4 _≳_ _≳_ = flip _≲_ infix 4 _⋧_ _⋧_ = flip _⋦_ -- Deprecated. infix 4 _∼_ _∼_ = _≲_ {-# WARNING_ON_USAGE _∼_ "Warning: _∼_ was deprecated in v2.0. Please use _≲_ instead. " #-} record TotalPreorder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _≲_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ -- The underlying equality. _≲_ : Rel Carrier ℓ₂ -- The relation. isTotalPreorder : IsTotalPreorder _≈_ _≲_ open IsTotalPreorder isTotalPreorder public using (total; isPreorder) preorder : Preorder c ℓ₁ ℓ₂ preorder = record { isPreorder = isPreorder } open Preorder preorder public hiding (Carrier; _≈_; _≲_; isPreorder) ------------------------------------------------------------------------ -- Partial orders ------------------------------------------------------------------------ record Poset c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isPartialOrder : IsPartialOrder _≈_ _≤_ open IsPartialOrder isPartialOrder public using (antisym; isPreorder) preorder : Preorder c ℓ₁ ℓ₂ preorder = record { isPreorder = isPreorder } open Preorder preorder public hiding (Carrier; _≈_; _≲_; isPreorder) renaming ( _⋦_ to _≰_; _≳_ to _≥_; _⋧_ to _≱_ ; ≲-respˡ-≈ to ≤-respˡ-≈ ; ≲-respʳ-≈ to ≤-respʳ-≈ ; ≲-resp-≈ to ≤-resp-≈ ) record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isDecPartialOrder : IsDecPartialOrder _≈_ _≤_ private module DPO = IsDecPartialOrder isDecPartialOrder open DPO public using (_≟_; _≤?_; isPartialOrder) poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public hiding (Carrier; _≈_; _≤_; isPartialOrder; module Eq) module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DPO.Eq.isDecEquivalence } open DecSetoid decSetoid public record StrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_ open IsStrictPartialOrder isStrictPartialOrder public hiding (module Eq) module Eq where setoid : Setoid c ℓ₁ setoid = record { isEquivalence = isEquivalence } open Setoid setoid public infix 4 _≮_ _≮_ : Rel Carrier _ x y = ¬ (x < y) infix 4 _>_ _>_ = flip _<_ infix 4 _≯_ _≯_ = flip _≮_ record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_ private module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder open DSPO public using (_<?_; _≟_; isStrictPartialOrder) strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } open StrictPartialOrder strictPartialOrder public hiding (Carrier; _≈_; _<_; isStrictPartialOrder; module Eq) module Eq where decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = DSPO.Eq.isDecEquivalence } open DecSetoid decSetoid public ------------------------------------------------------------------------ -- Total orders ------------------------------------------------------------------------ record TotalOrder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isTotalOrder : IsTotalOrder _≈_ _≤_ open IsTotalOrder isTotalOrder public using (total; isPartialOrder; isTotalPreorder) poset : Poset c ℓ₁ ℓ₂ poset = record { isPartialOrder = isPartialOrder } open Poset poset public hiding (Carrier; _≈_; _≤_; isPartialOrder) totalPreorder : TotalPreorder c ℓ₁ ℓ₂ totalPreorder = record { isTotalPreorder = isTotalPreorder } record DecTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _≤_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _≤_ : Rel Carrier ℓ₂ isDecTotalOrder : IsDecTotalOrder _≈_ _≤_ private module DTO = IsDecTotalOrder isDecTotalOrder open DTO public using (_≟_; _≤?_; isTotalOrder; isDecPartialOrder) totalOrder : TotalOrder c ℓ₁ ℓ₂ totalOrder = record { isTotalOrder = isTotalOrder } open TotalOrder totalOrder public hiding (Carrier; _≈_; _≤_; isTotalOrder; module Eq) decPoset : DecPoset c ℓ₁ ℓ₂ decPoset = record { isDecPartialOrder = isDecPartialOrder } open DecPoset decPoset public using (module Eq) -- Note that these orders are decidable. The current implementation -- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable -- definition capturing these three properties implies decidability -- as `Trichotomous` necessarily separates out the equality case. record StrictTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_ open IsStrictTotalOrder isStrictTotalOrder public using ( _≟_; _<?_; compare; isStrictPartialOrder ; isDecStrictPartialOrder; isDecEquivalence ) strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } open StrictPartialOrder strictPartialOrder public hiding (Carrier; _≈_; _<_; isStrictPartialOrder; module Eq) decStrictPartialOrder : DecStrictPartialOrder c ℓ₁ ℓ₂ decStrictPartialOrder = record { isDecStrictPartialOrder = isDecStrictPartialOrder } open DecStrictPartialOrder decStrictPartialOrder public using (module Eq) decSetoid : DecSetoid c ℓ₁ decSetoid = record { isDecEquivalence = Eq.isDecEquivalence } {-# WARNING_ON_USAGE decSetoid "Warning: decSetoid was deprecated in v1.3. Please use Eq.decSetoid instead." #-} record DenseLinearOrder c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _<_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _<_ : Rel Carrier ℓ₂ isDenseLinearOrder : IsDenseLinearOrder _≈_ _<_ open IsDenseLinearOrder isDenseLinearOrder public using (isStrictTotalOrder; dense) strictTotalOrder : StrictTotalOrder c ℓ₁ ℓ₂ strictTotalOrder = record { isStrictTotalOrder = isStrictTotalOrder } open StrictTotalOrder strictTotalOrder public hiding (Carrier; _≈_; _<_; isStrictTotalOrder) ------------------------------------------------------------------------ -- Apartness relations ------------------------------------------------------------------------ record ApartnessRelation c ℓ₁ ℓ₂ : Set (suc (c ℓ₁ ℓ₂)) where infix 4 _≈_ _#_ field Carrier : Set c _≈_ : Rel Carrier ℓ₁ _#_ : Rel Carrier ℓ₂ isApartnessRelation : IsApartnessRelation _≈_ _#_ open IsApartnessRelation isApartnessRelation public