------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.Indexed.Heterogeneous.Core where open import Level import Relation.Binary.Core as B ------------------------------------------------------------------------ -- Indexed binary relations -- Heterogeneous types IREL : {i₁ i₂ a₁ a₂} {I₁ : Set i₁} {I₂ : Set i₂} (I₁ Set a₁) (I₂ Set a₂) ( : Level) Set _ IREL A₁ A₂ = {i₁ i₂} A₁ i₁ A₂ i₂ Set -- Homogeneous types IRel : {i a} {I : Set i} (I Set a) ( : Level) Set _ IRel A = IREL A A ------------------------------------------------------------------------ -- Generalised implication. infixr 4 _=[_]⇒_ _=[_]⇒_ : {a b ℓ₁ ℓ₂} {A : Set a} {B : A Set b} B.Rel A ℓ₁ ((x : A) B x) IRel B ℓ₂ Set _ P =[ f ]⇒ Q = {i j} P i j Q (f i) (f j)