------------------------------------------------------------------------ -- The Agda standard library -- -- Order morphisms ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Relation.Binary.Morphism.Structures {a b} {A : Set a} {B : Set b} where open import Data.Product using (_,_) open import Function.Definitions open import Level open import Relation.Binary.Morphism.Definitions A B private variable ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level ------------------------------------------------------------------------ -- Relations ------------------------------------------------------------------------ record IsRelHomomorphism (_∼₁_ : Rel A ℓ₁) (_∼₂_ : Rel B ℓ₂) (⟦_⟧ : A B) : Set (a ℓ₁ ℓ₂) where field cong : Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ record IsRelMonomorphism (_∼₁_ : Rel A ℓ₁) (_∼₂_ : Rel B ℓ₂) (⟦_⟧ : A B) : Set (a ℓ₁ ℓ₂) where field isHomomorphism : IsRelHomomorphism _∼₁_ _∼₂_ ⟦_⟧ injective : Injective _∼₁_ _∼₂_ ⟦_⟧ open IsRelHomomorphism isHomomorphism public record IsRelIsomorphism (_∼₁_ : Rel A ℓ₁) (_∼₂_ : Rel B ℓ₂) (⟦_⟧ : A B) : Set (a b ℓ₁ ℓ₂) where field isMonomorphism : IsRelMonomorphism _∼₁_ _∼₂_ ⟦_⟧ surjective : Surjective _∼₁_ _∼₂_ ⟦_⟧ open IsRelMonomorphism isMonomorphism public bijective : Bijective _∼₁_ _∼₂_ ⟦_⟧ bijective = injective , surjective ------------------------------------------------------------------------ -- Orders ------------------------------------------------------------------------ record IsOrderHomomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) (_∼₁_ : Rel A ℓ₃) (_∼₂_ : Rel B ℓ₄) (⟦_⟧ : A B) : Set (a ℓ₁ ℓ₂ ℓ₃ ℓ₄) where field cong : Homomorphic₂ _≈₁_ _≈₂_ ⟦_⟧ mono : Homomorphic₂ _∼₁_ _∼₂_ ⟦_⟧ module Eq where isRelHomomorphism : IsRelHomomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelHomomorphism = record { cong = cong } isRelHomomorphism : IsRelHomomorphism _∼₁_ _∼₂_ ⟦_⟧ isRelHomomorphism = record { cong = mono } record IsOrderMonomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) (_∼₁_ : Rel A ℓ₃) (_∼₂_ : Rel B ℓ₄) (⟦_⟧ : A B) : Set (a ℓ₁ ℓ₂ ℓ₃ ℓ₄) where field isOrderHomomorphism : IsOrderHomomorphism _≈₁_ _≈₂_ _∼₁_ _∼₂_ ⟦_⟧ injective : Injective _≈₁_ _≈₂_ ⟦_⟧ cancel : Injective _∼₁_ _∼₂_ ⟦_⟧ open IsOrderHomomorphism isOrderHomomorphism public hiding (module Eq) module Eq where isRelMonomorphism : IsRelMonomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelMonomorphism = record { isHomomorphism = IsOrderHomomorphism.Eq.isRelHomomorphism isOrderHomomorphism ; injective = injective } isRelMonomorphism : IsRelMonomorphism _∼₁_ _∼₂_ ⟦_⟧ isRelMonomorphism = record { isHomomorphism = isRelHomomorphism ; injective = cancel } record IsOrderIsomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂) (_∼₁_ : Rel A ℓ₃) (_∼₂_ : Rel B ℓ₄) (⟦_⟧ : A B) : Set (a b ℓ₁ ℓ₂ ℓ₃ ℓ₄) where field isOrderMonomorphism : IsOrderMonomorphism _≈₁_ _≈₂_ _∼₁_ _∼₂_ ⟦_⟧ surjective : Surjective _≈₁_ _≈₂_ ⟦_⟧ open IsOrderMonomorphism isOrderMonomorphism public hiding (module Eq) module Eq where isRelIsomorphism : IsRelIsomorphism _≈₁_ _≈₂_ ⟦_⟧ isRelIsomorphism = record { isMonomorphism = IsOrderMonomorphism.Eq.isRelMonomorphism isOrderMonomorphism ; surjective = surjective }