------------------------------------------------------------------------ -- The Agda standard library -- -- Recomputable types and their algebra as Harrop formulas ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Nullary.Recomputable where open import Agda.Builtin.Equality using (_≡_; refl) open import Data.Empty using () open import Data.Product.Base using (_×_; _,_; proj₁; proj₂) open import Level using (Level) open import Relation.Nullary.Negation.Core using (¬_) private variable a b : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Definition -- -- The idea of being 'recomputable' is that, given an *irrelevant* proof -- of a proposition `A` (signalled by being a value of type `.A`, all of -- whose inhabitants are identified up to definitional equality, and hence -- do *not* admit pattern-matching), one may 'promote' such a value to a -- 'genuine' value of `A`, available for subsequent eg. pattern-matching. Recomputable : (A : Set a) Set a Recomputable A = .A A ------------------------------------------------------------------------ -- Fundamental property: 'promotion' is a constant function recompute-constant : (r : Recomputable A) (p q : A) r p r q recompute-constant r p q = refl ------------------------------------------------------------------------ -- Constructions ⊥-recompute : Recomputable ⊥-recompute () _×-recompute_ : Recomputable A Recomputable B Recomputable (A × B) (rA ×-recompute rB) p = rA (p .proj₁) , rB (p .proj₂) _→-recompute_ : (A : Set a) Recomputable B Recomputable (A B) (A →-recompute rB) f a = rB (f a) Π-recompute : (B : A Set b) (∀ x Recomputable (B x)) Recomputable (∀ x B x) Π-recompute B rB f a = rB a (f a) ∀-recompute : (B : A Set b) (∀ {x} Recomputable (B x)) Recomputable (∀ {x} B x) ∀-recompute B rB f = rB f -- corollary: negated propositions are Recomputable ¬-recompute : Recomputable (¬ A) ¬-recompute {A = A} = A →-recompute ⊥-recompute