This is the Base.Adjunction.Residuation module of the Agda Universal Algebra Library.
{-# OPTIONS --without-K --exact-split --safe #-} module Base.Adjunction.Residuation where -- Imports from Agda and the Agda Standard Library -------------------------------------- open import Agda.Primitive using () renaming ( Set to Type ) open import Function.Base using ( _on_ ; _∘_ ) open import Level using ( Level ; _⊔_ ; suc ) open import Relation.Binary.Bundles using ( Poset ) open import Relation.Binary.Core using ( _Preserves_⟶_ ) -- Imports from the Agda Universal Algebra Library -------------------------------------- open import Base.Relations.Discrete using ( PointWise ) private variable a ιᵃ α b ιᵇ β : Level module _ (A : Poset a ιᵃ α)(B : Poset b ιᵇ β) where open Poset private _≤A_ = _≤_ A _≤B_ = _≤_ B record Residuation : Type (suc (α ⊔ a ⊔ β ⊔ b)) where field f : Carrier A → Carrier B g : Carrier B → Carrier A fhom : f Preserves _≤A_ ⟶ _≤B_ ghom : g Preserves _≤B_ ⟶ _≤A_ gf≥id : ∀ a → a ≤A g (f a) fg≤id : ∀ b → f (g b) ≤B b
open Residuation open Poset module _ {A : Poset a ιᵃ α} {B : Poset b ιᵇ β} (R : Residuation A B) where private _≤A_ = _≤_ A _≤B_ = _≤_ B 𝑓 = (R .f) 𝑔 = (R .g) -- Pointwise equality of unary functions wrt equality on the given poset carrier -- 1. pointwise equality on B → A _≈̇A_ = PointWise{a = b}{A = Carrier B} (_≈_ A) -- 2. pointwise equality on A → B _≈̇B_ = PointWise{a = a}{A = Carrier A} (_≈_ B)
In a ring R
, if x y : R
and if x y x = x
, then y
is called a weak inverse for x
.
(A ring is called von Neumann regular if every element has a unique weak inverse.)
-- 𝑔 is a weak inverse for 𝑓 weak-inverse : (𝑓 ∘ 𝑔 ∘ 𝑓) ≈̇B 𝑓 weak-inverse a = antisym B lt gt where lt : 𝑓 (𝑔 (𝑓 a)) ≤B 𝑓 a lt = fg≤id R (𝑓 a) gt : 𝑓 a ≤B 𝑓 (𝑔 (𝑓 a)) gt = fhom R (gf≥id R a) -- 𝑓 is a weak inverse of 𝑔 weak-inverse' : (𝑔 ∘ 𝑓 ∘ 𝑔) ≈̇A 𝑔 weak-inverse' b = antisym A lt gt where lt : 𝑔 (𝑓 (𝑔 b)) ≤A 𝑔 b lt = ghom R (fg≤id R b) gt : 𝑔 b ≤A 𝑔 (𝑓 (𝑔 b)) gt = gf≥id R (𝑔 b)