This is the Base.Homomorphisms.HomomorphicImages module of the Agda Universal Algebra Library.
{-# OPTIONS --without-K --exact-split --safe #-} open import Overture using ( Signature ; 𝓞 ; 𝓥 ) module Base.Homomorphisms.HomomorphicImages {𝑆 : Signature 𝓞 𝓥} where -- Imports from Agda and the Agda Standard Library ------------------------------------------ open import Agda.Primitive using () renaming ( Set to Type ) open import Data.Product using ( _,_ ; Σ-syntax ; Σ ; _×_ ) open import Level using ( Level ; _⊔_ ; suc ) open import Relation.Unary using ( Pred ; _∈_ ) open import Relation.Binary.PropositionalEquality as ≡ using ( _≡_ ; module ≡-Reasoning ) -- Imports from the Agda Universal Algebra Library ------------------------------------------ open import Overture using ( 𝑖𝑑 ; ∣_∣ ; ∥_∥ ; lower∼lift ; lift∼lower ) open import Base.Functions using ( Image_∋_ ; Inv ; InvIsInverseʳ ; eq ; IsSurjective ) open import Base.Algebras {𝑆 = 𝑆} using ( Algebra ; Level-of-Carrier ; Lift-Alg ; ov ) open import Base.Homomorphisms.Basic {𝑆 = 𝑆} using ( hom ; 𝓁𝒾𝒻𝓉 ; 𝓁ℴ𝓌ℯ𝓇 ) open import Base.Homomorphisms.Properties {𝑆 = 𝑆} using ( Lift-hom )
We begin with what seems, for our purposes, the most useful way to represent the class of homomorphic images of an algebra in dependent type theory.
module _ {α β : Level } where _IsHomImageOf_ : (𝑩 : Algebra β)(𝑨 : Algebra α) → Type _ 𝑩 IsHomImageOf 𝑨 = Σ[ φ ∈ hom 𝑨 𝑩 ] IsSurjective ∣ φ ∣ HomImages : Algebra α → Type(𝓞 ⊔ 𝓥 ⊔ α ⊔ suc β) HomImages 𝑨 = Σ[ 𝑩 ∈ Algebra β ] 𝑩 IsHomImageOf 𝑨
These types should be self-explanatory, but just to be sure, let’s describe the Sigma type appearing in the second definition. Given an 𝑆
-algebra 𝑨 : Algebra α
, the type HomImages 𝑨
denotes the class of algebras 𝑩 : Algebra β
with a map φ : ∣ 𝑨 ∣ → ∣ 𝑩 ∣
such that φ
is a surjective homomorphism.
Given a class 𝒦
of 𝑆
-algebras, we need a type that expresses the assertion that a given algebra is a homomorphic image of some algebra in the class, as well as a type that represents all such homomorphic images.
module _ {α : Level} where IsHomImageOfClass : {𝒦 : Pred (Algebra α)(suc α)} → Algebra α → Type(ov α) IsHomImageOfClass {𝒦 = 𝒦} 𝑩 = Σ[ 𝑨 ∈ Algebra α ] ((𝑨 ∈ 𝒦) × (𝑩 IsHomImageOf 𝑨)) HomImageOfClass : Pred (Algebra α) (suc α) → Type(ov α) HomImageOfClass 𝒦 = Σ[ 𝑩 ∈ Algebra α ] IsHomImageOfClass{𝒦} 𝑩
Here are some tools that have been useful (e.g., in the road to the proof of Birkhoff’s HSP theorem). The first states and proves the simple fact that the lift of an epimorphism is an epimorphism.
module _ {α β : Level} where open Level open ≡-Reasoning Lift-epi-is-epi : {𝑨 : Algebra α}(ℓᵃ : Level){𝑩 : Algebra β}(ℓᵇ : Level)(h : hom 𝑨 𝑩) → IsSurjective ∣ h ∣ → IsSurjective ∣ Lift-hom ℓᵃ {𝑩} ℓᵇ h ∣ Lift-epi-is-epi {𝑨 = 𝑨} ℓᵃ {𝑩} ℓᵇ h hepi y = eq (lift a) η where lh : hom (Lift-Alg 𝑨 ℓᵃ) (Lift-Alg 𝑩 ℓᵇ) lh = Lift-hom ℓᵃ {𝑩} ℓᵇ h ζ : Image ∣ h ∣ ∋ (lower y) ζ = hepi (lower y) a : ∣ 𝑨 ∣ a = Inv ∣ h ∣ ζ ν : lift (∣ h ∣ a) ≡ ∣ Lift-hom ℓᵃ {𝑩} ℓᵇ h ∣ (Level.lift a) ν = ≡.cong (λ - → lift (∣ h ∣ (- a))) (lower∼lift {Level-of-Carrier 𝑨}{β}) η : y ≡ ∣ lh ∣ (lift a) η = y ≡⟨ (≡.cong-app lift∼lower) y ⟩ lift (lower y) ≡⟨ ≡.cong lift (≡.sym (InvIsInverseʳ ζ)) ⟩ lift (∣ h ∣ a) ≡⟨ ν ⟩ ∣ lh ∣ (lift a) ∎ Lift-Alg-hom-image : {𝑨 : Algebra α}(ℓᵃ : Level){𝑩 : Algebra β}(ℓᵇ : Level) → 𝑩 IsHomImageOf 𝑨 → (Lift-Alg 𝑩 ℓᵇ) IsHomImageOf (Lift-Alg 𝑨 ℓᵃ) Lift-Alg-hom-image {𝑨 = 𝑨} ℓᵃ {𝑩} ℓᵇ ((φ , φhom) , φepic) = Goal where lφ : hom (Lift-Alg 𝑨 ℓᵃ) (Lift-Alg 𝑩 ℓᵇ) lφ = Lift-hom ℓᵃ {𝑩} ℓᵇ (φ , φhom) lφepic : IsSurjective ∣ lφ ∣ lφepic = Lift-epi-is-epi ℓᵃ {𝑩} ℓᵇ (φ , φhom) φepic Goal : (Lift-Alg 𝑩 ℓᵇ) IsHomImageOf _ Goal = lφ , lφepic