------------------------------------------------------------------------ -- The Agda standard library -- -- Propositional equality -- -- This file contains some core properies of propositional equality -- which are re-exported by Relation.Binary.PropositionalEquality. They -- are ``equality rearrangement'' lemmas. ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} module Relation.Binary.PropositionalEquality.Properties where open import Function.Base using (id; _∘_) open import Level using (Level) open import Relation.Binary.Bundles using (Setoid; DecSetoid; Preorder; Poset) open import Relation.Binary.Structures using (IsEquivalence; IsDecEquivalence; IsPreorder; IsPartialOrder) open import Relation.Binary.Definitions using (DecidableEquality) import Relation.Binary.Properties.Setoid as Setoid open import Relation.Binary.PropositionalEquality.Core open import Relation.Unary using (Pred) open import Relation.Binary.Reasoning.Syntax private variable a b c p : Level A B C : Set a ------------------------------------------------------------------------ -- Standard eliminator for the propositional equality type J : {A : Set a} {x : A} (B : (y : A) x y Set b) {y : A} (p : x y) B x refl B y p J B refl b = b ------------------------------------------------------------------------ -- Binary and/or dependent versions of standard operations on equality dcong : {A : Set a} {B : A Set b} (f : (x : A) B x) {x y} (p : x y) subst B p (f x) f y dcong f refl = refl dcong₂ : {A : Set a} {B : A Set b} {C : Set c} (f : (x : A) B x C) {x₁ x₂ y₁ y₂} (p : x₁ x₂) subst B p y₁ y₂ f x₁ y₁ f x₂ y₂ dcong₂ f refl refl = refl dsubst₂ : {A : Set a} {B : A Set b} (C : (x : A) B x Set c) {x₁ x₂ y₁ y₂} (p : x₁ x₂) subst B p y₁ y₂ C x₁ y₁ C x₂ y₂ dsubst₂ C refl refl c = c ddcong₂ : {A : Set a} {B : A Set b} {C : (x : A) B x Set c} (f : (x : A) (y : B x) C x y) {x₁ x₂ y₁ y₂} (p : x₁ x₂) (q : subst B p y₁ y₂) dsubst₂ C p q (f x₁ y₁) f x₂ y₂ ddcong₂ f refl refl = refl ------------------------------------------------------------------------ -- Various equality rearrangement lemmas trans-reflʳ : {x y : A} (p : x y) trans p refl p trans-reflʳ refl = refl trans-assoc : {x y z u : A} (p : x y) {q : y z} {r : z u} trans (trans p q) r trans p (trans q r) trans-assoc refl = refl trans-symˡ : {x y : A} (p : x y) trans (sym p) p refl trans-symˡ refl = refl trans-symʳ : {x y : A} (p : x y) trans p (sym p) refl trans-symʳ refl = refl trans-injectiveˡ : {x y z : A} {p₁ p₂ : x y} (q : y z) trans p₁ q trans p₂ q p₁ p₂ trans-injectiveˡ refl = subst₂ _≡_ (trans-reflʳ _) (trans-reflʳ _) trans-injectiveʳ : {x y z : A} (p : x y) {q₁ q₂ : y z} trans p q₁ trans p q₂ q₁ q₂ trans-injectiveʳ refl eq = eq cong-id : {x y : A} (p : x y) cong id p p cong-id refl = refl cong-∘ : {x y : A} {f : B C} {g : A B} (p : x y) cong (f g) p cong f (cong g p) cong-∘ refl = refl sym-cong : {x y : A} {f : A B} (p : x y) sym (cong f p) cong f (sym p) sym-cong refl = refl trans-cong : {x y z : A} {f : A B} (p : x y) {q : y z} trans (cong f p) (cong f q) cong f (trans p q) trans-cong refl = refl cong₂-reflˡ : {_∙_ : A B C} {x u v} (p : u v) cong₂ _∙_ refl p cong (x ∙_) p cong₂-reflˡ refl = refl cong₂-reflʳ : {_∙_ : A B C} {x y u} (p : x y) cong₂ _∙_ p refl cong (_∙ u) p cong₂-reflʳ refl = refl module _ {P : Pred A p} {x y : A} where subst-injective : (x≡y : x y) {p q : P x} subst P x≡y p subst P x≡y q p q subst-injective refl p≡q = p≡q subst-subst : {z} (x≡y : x y) {y≡z : y z} {p : P x} subst P y≡z (subst P x≡y p) subst P (trans x≡y y≡z) p subst-subst refl = refl subst-subst-sym : (x≡y : x y) {p : P y} subst P x≡y (subst P (sym x≡y) p) p subst-subst-sym refl = refl subst-sym-subst : (x≡y : x y) {p : P x} subst P (sym x≡y) (subst P x≡y p) p subst-sym-subst refl = refl subst-∘ : {x y : A} {P : Pred B p} {f : A B} (x≡y : x y) {p : P (f x)} subst (P f) x≡y p subst P (cong f x≡y) p subst-∘ refl = refl -- Lemma 2.3.11 in the HoTT book, and `transport_map` in the UniMath -- library subst-application′ : {a b₁ b₂} {A : Set a} (B₁ : A Set b₁) {B₂ : A Set b₂} {x₁ x₂ : A} {y : B₁ x₁} (g : x B₁ x B₂ x) (eq : x₁ x₂) subst B₂ eq (g x₁ y) g x₂ (subst B₁ eq y) subst-application′ _ _ refl = refl subst-application : {a₁ a₂ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} (B₁ : A₁ Set b₁) {B₂ : A₂ Set b₂} {f : A₂ A₁} {x₁ x₂ : A₂} {y : B₁ (f x₁)} (g : x B₁ (f x) B₂ x) (eq : x₁ x₂) subst B₂ eq (g x₁ y) g x₂ (subst B₁ (cong f eq) y) subst-application _ _ refl = refl ------------------------------------------------------------------------ -- Structure of equality as a binary relation isEquivalence : IsEquivalence {A = A} _≡_ isEquivalence = record { refl = refl ; sym = sym ; trans = trans } isDecEquivalence : DecidableEquality A IsDecEquivalence _≡_ isDecEquivalence _≟_ = record { isEquivalence = isEquivalence ; _≟_ = _≟_ } setoid : Set a Setoid _ _ setoid A = record { Carrier = A ; _≈_ = _≡_ ; isEquivalence = isEquivalence } decSetoid : DecidableEquality A DecSetoid _ _ decSetoid _≟_ = record { _≈_ = _≡_ ; isDecEquivalence = isDecEquivalence _≟_ } ------------------------------------------------------------------------ -- Bundles for equality as a binary relation isPreorder : IsPreorder {A = A} _≡_ _≡_ isPreorder = Setoid.≈-isPreorder (setoid _) isPartialOrder : IsPartialOrder {A = A} _≡_ _≡_ isPartialOrder = Setoid.≈-isPartialOrder (setoid _) preorder : Set a Preorder _ _ _ preorder A = Setoid.≈-preorder (setoid A) poset : Set a Poset _ _ _ poset A = Setoid.≈-poset (setoid A) ------------------------------------------------------------------------ -- Reasoning -- This is a special instance of `Relation.Binary.Reasoning.Setoid`. -- Rather than instantiating the latter with (setoid A), we reimplement -- equation chains from scratch since then goals are printed much more -- readably. module ≡-Reasoning {a} {A : Set a} where open begin-syntax {A = A} _≡_ id public open ≡-syntax {A = A} _≡_ trans public open end-syntax {A = A} _≡_ refl public