------------------------------------------------------------------------ -- The Agda standard library -- -- Finite sets ------------------------------------------------------------------------ -- Note that elements of Fin n can be seen as natural numbers in the -- set {m | m < n}. The notation "m" in comments below refers to this -- natural number view. {-# OPTIONS --cubical-compatible --safe #-} module Data.Fin.Base where open import Data.Bool.Base using (Bool; T) open import Data.Nat.Base as using (; zero; suc) open import Data.Product.Base as Product using (_×_; _,_; proj₁; proj₂) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′) open import Function.Base using (id; _∘_; _on_; flip; _$_) open import Level using (0ℓ) open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality.Core using (_≡_; _≢_; refl; cong) open import Relation.Binary.Indexed.Heterogeneous.Core using (IRel) open import Relation.Nullary.Negation.Core using (contradiction) private variable m n : ------------------------------------------------------------------------ -- Types -- Fin n is a type with n elements. data Fin : Set where zero : Fin (suc n) suc : (i : Fin n) Fin (suc n) -- A conversion: toℕ "i" = i. toℕ : Fin n toℕ zero = 0 toℕ (suc i) = suc (toℕ i) -- A Fin-indexed variant of Fin. Fin′ : Fin n Set Fin′ i = Fin (toℕ i) ------------------------------------------------------------------------ -- A cast that actually computes on constructors (as opposed to subst) cast : .(m n) Fin m Fin n cast {zero} {zero} eq k = k cast {suc m} {suc n} eq zero = zero cast {suc m} {suc n} eq (suc k) = suc (cast (cong ℕ.pred eq) k) ------------------------------------------------------------------------ -- Conversions -- toℕ is defined above. -- fromℕ n = "n". fromℕ : (n : ) Fin (suc n) fromℕ zero = zero fromℕ (suc n) = suc (fromℕ n) -- fromℕ< {m} _ = "m". fromℕ< : .(m ℕ.< n) Fin n fromℕ< {zero} {suc _} _ = zero fromℕ< {suc m} {suc _} m<n = suc (fromℕ< (ℕ.s<s⁻¹ m<n)) -- fromℕ<″ m _ = "m". fromℕ<″ : m {n} .(m ℕ.<″ n) Fin n fromℕ<″ zero {suc _} _ = zero fromℕ<″ (suc m) {suc _} m<″n = suc (fromℕ<″ m (ℕ.s<″s⁻¹ m<″n)) -- canonical liftings of i:Fin m to larger index -- injection on the left: "i" ↑ˡ n = "i" in Fin (m + n) infixl 5 _↑ˡ_ _↑ˡ_ : {m} Fin m n Fin (m ℕ.+ n) zero ↑ˡ n = zero (suc i) ↑ˡ n = suc (i ↑ˡ n) -- injection on the right: n ↑ʳ "i" = "n + i" in Fin (n + m) infixr 5 _↑ʳ_ _↑ʳ_ : {m} n Fin m Fin (n ℕ.+ m) zero ↑ʳ i = i (suc n) ↑ʳ i = suc (n ↑ʳ i) -- reduce≥ "m + i" _ = "i". reduce≥ : (i : Fin (m ℕ.+ n)) .(m ℕ.≤ toℕ i) Fin n reduce≥ {zero} i _ = i reduce≥ {suc _} (suc i) m≤i = reduce≥ i (ℕ.s≤s⁻¹ m≤i) -- inject⋆ m "i" = "i". inject : {i : Fin n} Fin′ i Fin n inject {i = suc i} zero = zero inject {i = suc i} (suc j) = suc (inject j) inject! : {i : Fin (suc n)} Fin′ i Fin n inject! {n = suc _} {i = suc _} zero = zero inject! {n = suc _} {i = suc _} (suc j) = suc (inject! j) inject₁ : Fin n Fin (suc n) inject₁ zero = zero inject₁ (suc i) = suc (inject₁ i) inject≤ : Fin m .(m ℕ.≤ n) Fin n inject≤ {n = suc _} zero _ = zero inject≤ {n = suc _} (suc i) m≤n = suc (inject≤ i (ℕ.s≤s⁻¹ m≤n)) -- lower₁ "i" _ = "i". lower₁ : (i : Fin (suc n)) n toℕ i Fin n lower₁ {zero} zero ne = contradiction refl ne lower₁ {suc n} zero _ = zero lower₁ {suc n} (suc i) ne = suc (lower₁ i (ne cong suc)) -- A strengthening injection into the minimal Fin fibre. strengthen : (i : Fin n) Fin′ (suc i) strengthen zero = zero strengthen (suc i) = suc (strengthen i) -- splitAt m "i" = inj₁ "i" if i < m -- inj₂ "i - m" if i ≥ m -- This is dual to splitAt from Data.Vec. splitAt : m {n} Fin (m ℕ.+ n) Fin m Fin n splitAt zero i = inj₂ i splitAt (suc m) zero = inj₁ zero splitAt (suc m) (suc i) = Sum.map₁ suc (splitAt m i) -- inverse of above function join : m n Fin m Fin n Fin (m ℕ.+ n) join m n = [ _↑ˡ n , m ↑ʳ_ ]′ -- quotRem k "i" = "i % k" , "i / k" -- This is dual to group from Data.Vec. quotRem : n Fin (m ℕ.* n) Fin n × Fin m quotRem {suc m} n i = [ (_, zero) , Product.map₂ suc quotRem {m} n ]′ $ splitAt n i -- a variant of quotRem the type of whose result matches the order of multiplication remQuot : n Fin (m ℕ.* n) Fin m × Fin n remQuot i = Product.swap quotRem i quotient : n Fin (m ℕ.* n) Fin m quotient n = proj₁ remQuot n remainder : n Fin (m ℕ.* n) Fin n remainder {m} n = proj₂ remQuot {m} n -- inverse of remQuot combine : Fin m Fin n Fin (m ℕ.* n) combine {suc m} {n} zero j = j ↑ˡ (m ℕ.* n) combine {suc m} {n} (suc i) j = n ↑ʳ (combine i j) -- Next in progression after splitAt and remQuot finToFun : Fin (m ℕ.^ n) (Fin n Fin m) finToFun {m} {suc n} i zero = quotient (m ℕ.^ n) i finToFun {m} {suc n} i (suc j) = finToFun (remainder {m} (m ℕ.^ n) i) j -- inverse of above function funToFin : (Fin m Fin n) Fin (n ℕ.^ m) funToFin {zero} f = zero funToFin {suc m} f = combine (f zero) (funToFin (f suc)) ------------------------------------------------------------------------ -- Operations -- Folds. fold : {t} (T : Set t) {m} (∀ {n} T n T (suc n)) (∀ {n} T (suc n)) Fin m T m fold T f x zero = x fold T f x (suc i) = f (fold T f x i) fold′ : {n t} (T : Fin (suc n) Set t) (∀ i T (inject₁ i) T (suc i)) T zero i T i fold′ T f x zero = x fold′ {n = suc n} T f x (suc i) = f i (fold′ (T inject₁) (f inject₁) x i) -- Lifts functions. lift : k (Fin m Fin n) Fin (k ℕ.+ m) Fin (k ℕ.+ n) lift zero f i = f i lift (suc k) f zero = zero lift (suc k) f (suc i) = suc (lift k f i) -- "i" + "j" = "i + j". infixl 6 _+_ _+_ : (i : Fin m) (j : Fin n) Fin (toℕ i ℕ.+ n) zero + j = j suc i + j = suc (i + j) -- "i" - "j" = "i ∸ j". infixl 6 _-_ _-_ : (i : Fin n) (j : Fin′ (suc i)) Fin (n ℕ.∸ toℕ j) i - zero = i suc i - suc j = i - j -- m ℕ- "i" = "m ∸ i". infixl 6 _ℕ-_ _ℕ-_ : (n : ) (j : Fin (suc n)) Fin (suc n ℕ.∸ toℕ j) n ℕ- zero = fromℕ n suc n ℕ- suc i = n ℕ- i -- m ℕ-ℕ "i" = m ∸ i. infixl 6 _ℕ-ℕ_ _ℕ-ℕ_ : (n : ) Fin (suc n) n ℕ-ℕ zero = n suc n ℕ-ℕ suc i = n ℕ-ℕ i -- pred "i" = "pred i". pred : Fin n Fin n pred zero = zero pred (suc i) = inject₁ i -- opposite "i" = "n - i" (i.e. the additive inverse). opposite : Fin n Fin n opposite {suc n} zero = fromℕ n opposite {suc n} (suc i) = inject₁ (opposite i) -- The function f(i,j) = if j>i then j-1 else j -- This is a variant of the thick function from Conor -- McBride's "First-order unification by structural recursion". punchOut : {i j : Fin (suc n)} i j Fin n punchOut {_} {zero} {zero} i≢j = contradiction refl i≢j punchOut {_} {zero} {suc j} _ = j punchOut {suc _} {suc i} {zero} _ = zero punchOut {suc _} {suc i} {suc j} i≢j = suc (punchOut (i≢j cong suc)) -- The function f(i,j) = if j≥i then j+1 else j punchIn : Fin (suc n) Fin n Fin (suc n) punchIn zero j = suc j punchIn (suc i) zero = zero punchIn (suc i) (suc j) = suc (punchIn i j) -- The function f(i,j) such that f(i,j) = if j≤i then j else j-1 pinch : Fin n Fin (suc n) Fin n pinch {suc n} _ zero = zero pinch {suc n} zero (suc j) = j pinch {suc n} (suc i) (suc j) = suc (pinch i j) ------------------------------------------------------------------------ -- Order relations infix 4 _≤_ _≥_ _<_ _>_ _≤_ : IRel Fin 0ℓ i j = toℕ i ℕ.≤ toℕ j _≥_ : IRel Fin 0ℓ i j = toℕ i ℕ.≥ toℕ j _<_ : IRel Fin 0ℓ i < j = toℕ i ℕ.< toℕ j _>_ : IRel Fin 0ℓ i > j = toℕ i ℕ.> toℕ j ------------------------------------------------------------------------ -- An ordering view. data Ordering {n : } : Fin n Fin n Set where less : greatest (least : Fin′ greatest) Ordering (inject least) greatest equal : i Ordering i i greater : greatest (least : Fin′ greatest) Ordering greatest (inject least) compare : (i j : Fin n) Ordering i j compare zero zero = equal zero compare zero (suc j) = less (suc j) zero compare (suc i) zero = greater (suc i) zero compare (suc i) (suc j) with compare i j ... | less greatest least = less (suc greatest) (suc least) ... | greater greatest least = greater (suc greatest) (suc least) ... | equal i = equal (suc i) ------------------------------------------------------------------------ -- DEPRECATED NAMES ------------------------------------------------------------------------ -- Please use the new names as continuing support for the old names is -- not guaranteed. -- Version 2.0 raise = _↑ʳ_ {-# WARNING_ON_USAGE raise "Warning: raise was deprecated in v2.0. Please use _↑ʳ_ instead." #-} inject+ : {m} n Fin m Fin (m ℕ.+ n) inject+ n i = i ↑ˡ n {-# WARNING_ON_USAGE inject+ "Warning: inject+ was deprecated in v2.0. Please use _↑ˡ_ instead. NB argument order has been flipped: the left-hand argument is the Fin m the right-hand is the Nat index increment." #-} data _≺_ : Set where _≻toℕ_ : n (i : Fin n) toℕ i n {-# WARNING_ON_USAGE _≺_ "Warning: _≺_ was deprecated in v2.0. Please use equivalent relation _<_ instead." #-} {-# WARNING_ON_USAGE _≻toℕ_ "Warning: _≻toℕ_ was deprecated in v2.0. Please use toℕ<n from Data.Fin.Properties instead." #-}