------------------------------------------------------------------------ -- The Agda standard library -- -- Indexed binary relations ------------------------------------------------------------------------ -- The contents of this module should be accessed via -- `Relation.Binary.Indexed.Heterogeneous`. {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Indexed.Heterogeneous.Core module Relation.Binary.Indexed.Heterogeneous.Structures {i a } {I : Set i} (A : I Set a) (_≈_ : IRel A ) where open import Function.Base open import Level using (suc; _⊔_) open import Relation.Binary.Core using (_⇒_) open import Relation.Binary.PropositionalEquality.Core as using (_≡_) open import Relation.Binary.Indexed.Heterogeneous.Definitions ------------------------------------------------------------------------ -- Equivalences record IsIndexedEquivalence : Set (i a ) where field refl : Reflexive A _≈_ sym : Symmetric A _≈_ trans : Transitive A _≈_ reflexive : {i} _≡_ _⇒_ _≈_ {i} reflexive ≡.refl = refl record IsIndexedPreorder {ℓ₂} (_≲_ : IRel A ℓ₂) : Set (i a ℓ₂) where field isEquivalence : IsIndexedEquivalence reflexive : {i j} (_≈_ {i} {j}) _⇒_ _≲_ trans : Transitive A _≲_ module Eq = IsIndexedEquivalence isEquivalence refl : Reflexive A _≲_ refl = reflexive Eq.refl