This is the Base.Functions.Transformers module of the agda-algebras library. Here we define functions for translating from one type to another.
{-# OPTIONS --without-K --exact-split --safe #-} module Base.Functions.Transformers where -- Imports from Agda and the Agda Standard Library ------------------------------- open import Agda.Primitive using () renaming ( Set to Type ) open import Data.Product using ( _,_ ; _×_ ) open import Data.Fin.Base using ( Fin ) open import Function.Base using ( _∘_ ; id ) open import Level using ( _⊔_ ; Level ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; module ≡-Reasoning ) -- Imports from agda-algebras ---------------------------------------------------- open import Overture using ( _≈_ ) private variable α β : Level
In set theory, these would simply be bijections between sets, or “set isomorphisms.”
record Bijection (A : Type α)(B : Type β) : Type (α ⊔ β) where field to : A → B from : B → A to-from : to ∘ from ≡ id from-to : from ∘ to ≡ id ∣_∣=∣_∣ : (A : Type α)(B : Type β) → Type (α ⊔ β) ∣ A ∣=∣ B ∣ = Bijection A B record PointwiseBijection (A : Type α)(B : Type β) : Type (α ⊔ β) where field to : A → B from : B → A to-from : to ∘ from ≈ id from-to : from ∘ to ≈ id ∣_∣≈∣_∣ : (A : Type α)(B : Type β) → Type (α ⊔ β) ∣ A ∣≈∣ B ∣ = PointwiseBijection A B uncurry₀ : {A : Type α} → A → A → (A × A) uncurry₀ x y = x , y module _ {A : Type α} {B : Type β} where Curry : ((A × A) → B) → A → A → B Curry f x y = f (uncurry₀ x y) Uncurry : (A → A → B) → A × A → B Uncurry f (x , y) = f x y A×A→B≅A→A→B : ∣ (A × A → B) ∣=∣ (A → A → B) ∣ A×A→B≅A→A→B = record { to = Curry ; from = Uncurry ; to-from = refl ; from-to = refl }
module _ {A : Type α} where open Fin renaming (zero to z ; suc to s) A×A→Fin2A : A × A → Fin 2 → A A×A→Fin2A (x , y) z = x A×A→Fin2A (x , y) (s z) = y Fin2A→A×A : (Fin 2 → A) → A × A Fin2A→A×A u = u z , u (s z) Fin2A~A×A : {A : Type α} → Fin2A→A×A ∘ A×A→Fin2A ≡ id Fin2A~A×A = refl A×A~Fin2A-ptws : ∀ u → (A×A→Fin2A (Fin2A→A×A u)) ≈ u A×A~Fin2A-ptws u z = refl A×A~Fin2A-ptws u (s z) = refl A→A→Fin2A : A → A → Fin 2 → A A→A→Fin2A x y z = x A→A→Fin2A x y (s _) = y A→A→Fin2A' : A → A → Fin 2 → A A→A→Fin2A' x y = u where u : Fin 2 → A u z = x u (s z) = y A→A→Fin2A-ptws-agree : (x y : A) → ∀ i → (A→A→Fin2A x y) i ≡ (A→A→Fin2A' x y) i A→A→Fin2A-ptws-agree x y z = refl A→A→Fin2A-ptws-agree x y (s z) = refl A→A~Fin2A-ptws : (v : Fin 2 → A) → ∀ i → A→A→Fin2A (v z) (v (s z)) i ≡ v i A→A~Fin2A-ptws v z = refl A→A~Fin2A-ptws v (s z) = refl Fin2A : (Fin 2 → A) → Fin 2 → A Fin2A u z = u z Fin2A u (s z) = u (s z) Fin2A u (s (s ())) Fin2A≡ : (u : Fin 2 → A) → ∀ i → (Fin2A u) i ≡ u i Fin2A≡ u z = refl Fin2A≡ u (s z) = refl
Somehow we cannot establish a bijection between the two seemingly isomorphic
function types, (Fin 2 → A) → B
and A × A → B
, nor between the types
(Fin 2 → A) → B
and A → A → B
.
module _ {A : Type α} {B : Type β} where open Fin renaming (zero to z ; suc to s) lemma : (u : Fin 2 → A) → u ≈ (λ {z → u z ; (s z) → u (s z)}) lemma u z = refl lemma u (s z) = refl CurryFin2 : ((Fin 2 → A) → B) → A → A → B CurryFin2 f x y = f (A→A→Fin2A x y) UncurryFin2 : (A → A → B) → ((Fin 2 → A) → B) UncurryFin2 f u = f (u z) (u (s z)) CurryFin2~UncurryFin2 : CurryFin2 ∘ UncurryFin2 ≡ id CurryFin2~UncurryFin2 = refl open ≡-Reasoning CurryFin3 : {A : Type α} → ((Fin 3 → A) → B) → A → A → A → B CurryFin3 {A = A} f x₁ x₂ x₃ = f u where u : Fin 3 → A u z = x₁ u (s z) = x₂ u (s (s z)) = x₃ UncurryFin3 : (A → A → A → B) → ((Fin 3 → A) → B) UncurryFin3 f u = f (u z) (u (s z)) (u (s (s z))) Fin2A→B-to-A×A→B : ((Fin 2 → A) → B) → A × A → B Fin2A→B-to-A×A→B f = f ∘ A×A→Fin2A A×A→B-to-Fin2A→B : (A × A → B) → ((Fin 2 → A) → B) A×A→B-to-Fin2A→B f = f ∘ Fin2A→A×A Fin2A→B~A×A→B : Fin2A→B-to-A×A→B ∘ A×A→B-to-Fin2A→B ≡ id Fin2A→B~A×A→B = refl