This is the Base.Varieties.Preservation module of the Agda Universal Algebra Library. In this module we show that identities are preserved by closure operators H, S, and P. This will establish the easy direction of Birkhoff’s HSP Theorem.
{-# OPTIONS --without-K --exact-split --safe #-} open import Overture using ( 𝓞 ; 𝓥 ; Signature ) module Base.Varieties.Preservation {𝑆 : Signature 𝓞 𝓥} where -- Imports from Agda and the Agda Standard Library ---------------------- open import Agda.Primitive using () renaming ( Set to Type ) open import Data.Product using ( _,_ ; Σ-syntax ; _×_ ) renaming ( proj₁ to fst ; proj₂ to snd ) open import Data.Sum using ( _⊎_ ) renaming ( inj₁ to inl ; inj₂ to inr ) open import Function using ( _∘_ ) open import Level using ( Level ; _⊔_ ; suc ) open import Relation.Unary using ( Pred ; _⊆_ ; _∈_ ; {_} ; _∪_ ) open import Axiom.Extensionality.Propositional using () renaming (Extensionality to funext) open import Relation.Binary.PropositionalEquality as ≡ using ( _≡_ ; module ≡-Reasoning ) -- Imports from the Agda Universal Algebra Library --------------------------------------------- open import Overture using ( ∣_∣ ; ∥_∥ ; _⁻¹ ) open import Base.Functions using ( Inv ; InvIsInverseʳ ; IsInjective ) open import Base.Equality using ( SwellDef ; hfunext ; DFunExt ) open import Base.Algebras {𝑆 = 𝑆} using ( Algebra ; Lift-Alg ; ov ; ⨅ ; 𝔄 ; class-product ) open import Base.Homomorphisms {𝑆 = 𝑆} using ( is-homomorphism ; _≅_ ; ≅-sym ; Lift-≅ ; ≅-trans ; ⨅≅ ; ≅-refl ) using ( Lift-Alg-iso ; Lift-Alg-assoc ) open import Base.Terms {𝑆 = 𝑆} using ( Term ; 𝑻 ; _⟦_⟧; comm-hom-term ) open import Base.Subalgebras {𝑆 = 𝑆} using ( _IsSubalgebraOfClass_ ; ≤-Lift ; _IsSubalgebraOf_ ; _≤_ ) using ( Lift-≤-Lift ; SubalgebraOfClass ) open import Base.Varieties.EquationalLogic {𝑆 = 𝑆} using ( _⊫_≈_ ; _⊧_≈_ ; Th ) open import Base.Varieties.Properties {𝑆 = 𝑆} using ( ⊧-Lift-invar ; ⊧-lower-invar ; ⊧-I-invar ; ⊧-S-invar ; ⊧-P-invar ) using ( ⊧-S-class-invar ; ⊧-P-lift-invar ) open import Base.Varieties.Closure {𝑆 = 𝑆} using ( H ; S ; P ; V ; P-expa ; S-mono ; S→subalgebra ; Lift-Alg-subP' ) using ( subalgebra→S ; P-idemp ; module Vlift ) open H ; open S ; open P ; open V private variable α β : Level
The types defined above represent operators with useful closure properties. We now prove a handful of such properties that we need later.
The next lemma would be too obvious to care about were it not for the fact that we’ll need it later, so it too must be formalized.
S⊆SP : (𝒦 : Pred (Algebra α)(ov α)) → S{α}{β} 𝒦 ⊆ S{α ⊔ β}{α ⊔ β} (P{α}{β} 𝒦) S⊆SP {α} {β} 𝒦 {.(Lift-Alg 𝑨 β)}(sbase{𝑨} x) = siso spllA(≅-sym Lift-≅) where llA : Algebra (α ⊔ β) llA = Lift-Alg (Lift-Alg 𝑨 β) (α ⊔ β) spllA : llA ∈ S (P 𝒦) spllA = sbase{α ⊔ β}{α ⊔ β} (pbase x) S⊆SP {α} {β} 𝒦 {.(Lift-Alg 𝑨 β)}(slift{𝑨} x) = subalgebra→S lAsc where splAu : 𝑨 ∈ S(P 𝒦) splAu = S⊆SP{α}{α} 𝒦 x Asc : 𝑨 IsSubalgebraOfClass (P 𝒦) Asc = S→subalgebra{α}{P{α}{α} 𝒦}{𝑨} splAu lAsc : (Lift-Alg 𝑨 β) IsSubalgebraOfClass (P 𝒦) lAsc = Lift-Alg-subP' Asc S⊆SP {α} {β} 𝒦 {𝑩}(ssub{𝑨} sA B≤A) = ssub (subalgebra→S lAsc) (≤-Lift 𝑨 B≤A ) where lA : Algebra (α ⊔ β) lA = Lift-Alg 𝑨 β splAu : 𝑨 ∈ S (P 𝒦) splAu = S⊆SP{α}{α} 𝒦 sA Asc : 𝑨 IsSubalgebraOfClass (P 𝒦) Asc = S→subalgebra{α}{P{α}{α} 𝒦}{𝑨} splAu lAsc : lA IsSubalgebraOfClass (P 𝒦) lAsc = Lift-Alg-subP' Asc S⊆SP {α = α}{β} 𝒦 {𝑩}(siso{𝑨} sA A≅B) = siso{α ⊔ β}{α ⊔ β} lAsp lA≅B where lA : Algebra (α ⊔ β) lA = Lift-Alg 𝑨 β lAsc : lA IsSubalgebraOfClass (P 𝒦) lAsc = Lift-Alg-subP' (S→subalgebra{α}{P{α}{α} 𝒦}{𝑨} (S⊆SP 𝒦 sA)) lAsp : lA ∈ S(P 𝒦) lAsp = subalgebra→S{α ⊔ β}{α ⊔ β}{P{α}{β} 𝒦}{lA} lAsc lA≅B : lA ≅ 𝑩 lA≅B = ≅-trans (≅-sym Lift-≅) A≅B
We need to formalize one more lemma before arriving the main objective of this section, which is the proof of the inclusion PS⊆SP.
module _ {α β : Level} {𝒦 : Pred(Algebra α)(ov α)} where lemPS⊆SP : hfunext β α → funext β α → {I : Type β}{ℬ : I → Algebra α} → (∀ i → (ℬ i) IsSubalgebraOfClass 𝒦) → ⨅ ℬ IsSubalgebraOfClass (P{α}{β} 𝒦) lemPS⊆SP hwu fwu {I}{ℬ} B≤K = ⨅ 𝒜 , (⨅ SA , ⨅SA≤⨅𝒜) , ξ , (⨅≅ {fiu = fwu}{fiw = fwu} B≅SA) where 𝒜 : I → Algebra α 𝒜 = λ i → ∣ B≤K i ∣ SA : I → Algebra α SA = λ i → ∣ fst ∥ B≤K i ∥ ∣ B≅SA : ∀ i → ℬ i ≅ SA i B≅SA = λ i → ∥ snd ∥ B≤K i ∥ ∥ SA≤𝒜 : ∀ i → (SA i) IsSubalgebraOf (𝒜 i) SA≤𝒜 = λ i → snd ∣ ∥ B≤K i ∥ ∣ h : ∀ i → ∣ SA i ∣ → ∣ 𝒜 i ∣ h = λ i → fst ∣ SA≤𝒜 i ∣ hinj : ∀ i → IsInjective (h i) hinj = λ i → snd (snd ∣ ∥ B≤K i ∥ ∣) σ : ∣ ⨅ SA ∣ → ∣ ⨅ 𝒜 ∣ σ = λ x i → (h i) (x i) ν : is-homomorphism (⨅ SA) (⨅ 𝒜) σ ν = λ 𝑓 𝒂 → fwu λ i → (snd ∣ SA≤𝒜 i ∣) 𝑓 (λ x → 𝒂 x i) σinj : IsInjective σ σinj σxσy = fwu λ i → (hinj i)(≡.cong-app σxσy i) ⨅SA≤⨅𝒜 : ⨅ SA ≤ ⨅ 𝒜 ⨅SA≤⨅𝒜 = (σ , ν) , σinj ξ : ⨅ 𝒜 ∈ P 𝒦 ξ = produ (λ i → P-expa (∣ snd ∥ B≤K i ∥ ∣))
Finally, we are in a position to prove that a product of subalgebras of algebras
in a class 𝒦
is a subalgebra of a product of algebras in 𝒦
.
module _ {α : Level} {fovu : funext (ov α) (ov α)} {𝒦 : Pred (Algebra α)(ov α)} where PS⊆SP : -- extensionality assumptions: hfunext (ov α)(ov α) → P{ov α}{ov α} (S{α}{ov α} 𝒦) ⊆ S{ov α}{ov α} (P{α}{ov α} 𝒦) PS⊆SP _ (pbase (sbase x)) = sbase (pbase x) PS⊆SP _ (pbase (slift{𝑨} x)) = slift (S⊆SP{α}{ov α} 𝒦 (slift x)) PS⊆SP _ (pbase{𝑩}(ssub{𝑨} sA B≤A)) = siso(ssub(S⊆SP 𝒦 (slift sA))(Lift-≤-Lift (ov(α)){𝑨}(ov(α))B≤A)) ≅-refl PS⊆SP _ (pbase (siso{𝑨}{𝑩} x A≅B)) = siso (S⊆SP 𝒦 (slift x)) ( Lift-Alg-iso A≅B ) PS⊆SP hfe (pliftu x) = slift (PS⊆SP hfe x) PS⊆SP hfe (pliftw x) = slift (PS⊆SP hfe x) PS⊆SP hfe (produ{I}{𝒜} x) = (S-mono (P-idemp)) (subalgebra→S η) where ξ : (i : I) → (𝒜 i) IsSubalgebraOfClass (P{α}{ov α} 𝒦) ξ i = S→subalgebra (PS⊆SP hfe (x i)) η : ⨅ 𝒜 IsSubalgebraOfClass (P{ov α}{ov α} (P{α}{ov α} 𝒦)) η = lemPS⊆SP hfe fovu {I} {𝒜} ξ PS⊆SP hfe (prodw{I}{𝒜} x) = (S-mono (P-idemp)) (subalgebra→S η) where ξ : (i : I) → (𝒜 i) IsSubalgebraOfClass (P{α}{ov α} 𝒦) ξ i = S→subalgebra (PS⊆SP hfe (x i)) η : ⨅ 𝒜 IsSubalgebraOfClass (P{ov α}{ov α} (P{α}{ov α} 𝒦)) η = lemPS⊆SP hfe fovu {I} {𝒜} ξ PS⊆SP hfe (pisow{𝑨}{𝑩} pA A≅B) = siso (PS⊆SP hfe pA) A≅B
We conclude this subsection with three more inclusion relations that will have bit parts to play later (e.g., in the formal proof of Birkhoff’s Theorem).
P⊆V : {α β : Level}{𝒦 : Pred (Algebra α)(ov α)} → P{α}{β} 𝒦 ⊆ V{α}{β} 𝒦 P⊆V (pbase x) = vbase x P⊆V{α} (pliftu x) = vlift (P⊆V{α}{α} x) P⊆V{α}{β} (pliftw x) = vliftw (P⊆V{α}{β} x) P⊆V (produ x) = vprodu (λ i → P⊆V (x i)) P⊆V (prodw x) = vprodw (λ i → P⊆V (x i)) P⊆V (pisow x x₁) = visow (P⊆V x) x₁ SP⊆V : {α β : Level}{𝒦 : Pred (Algebra α)(ov α)} → S{α ⊔ β}{α ⊔ β} (P{α}{β} 𝒦) ⊆ V 𝒦 SP⊆V (sbase{𝑨} PCloA) = P⊆V (pisow PCloA Lift-≅) SP⊆V (slift{𝑨} x) = vliftw (SP⊆V x) SP⊆V (ssub{𝑨}{𝑩} spA B≤A) = vssubw (SP⊆V spA) B≤A SP⊆V (siso x x₁) = visow (SP⊆V x) x₁
As mentioned earlier, a technical hurdle that must be overcome when formalizing
proofs in Agda is the proper handling of universe levels. In particular, in the
proof of the Birkhoff’s theorem, for example, we will need to know that if an
algebra 𝑨
belongs to the variety V 𝒦
, then so does the lift of 𝑨
. Let
us get the tedious proof of this technical lemma out of the way.
Above we proved that SP(𝒦) ⊆ V(𝒦)
, and we did so under fairly general
assumptions about the universe level parameters. Unfortunately, this is sometimes
not quite general enough, so we now prove the inclusion again for the specific
universe parameters that align with subsequent applications of this result.
module _ {α : Level} {fe₀ : funext (ov α) α} {fe₁ : funext ((ov α) ⊔ (suc (ov α))) (suc (ov α))} {fe₂ : funext (ov α) (ov α)} {𝒦 : Pred (Algebra α)(ov α)} where open Vlift {α}{fe₀}{fe₁}{fe₂}{𝒦} SP⊆V' : S{ov α}{suc (ov α)} (P{α}{ov α} 𝒦) ⊆ V 𝒦 SP⊆V' (sbase{𝑨} x) = visow (VlA (SP⊆V (sbase x))) (≅-sym (Lift-Alg-assoc _ _{𝑨})) SP⊆V' (slift x) = VlA (SP⊆V x) SP⊆V' (ssub{𝑨}{𝑩} spA B≤A) = vssubw (VlA (SP⊆V spA)) B≤lA where B≤lA : 𝑩 ≤ Lift-Alg 𝑨 (suc (ov α)) B≤lA = ≤-Lift 𝑨 B≤A SP⊆V' (siso{𝑨}{𝑩} x A≅B) = visow (VlA (SP⊆V x)) Goal where Goal : Lift-Alg 𝑨 (suc (ov α)) ≅ 𝑩 Goal = ≅-trans (≅-sym Lift-≅) A≅B
Finally, we prove a result that plays an important role, e.g., in the formal proof
of Birkhoff’s Theorem. As we saw in Base.Algebras.Products, the (informal)
product ⨅ S(𝒦)
of all subalgebras of algebras in 𝒦 is implemented (formally)
in the agda-algebras library as
⨅ 𝔄 S(𝒦)
. Our goal is to prove that this product belongs to SP(𝒦)
. We do so by
first proving that the product belongs to PS(𝒦)
and then applying the PS⊆SP
lemma.
Before doing so, we need to redefine the class product so that each factor comes
with a map from the type X
of variable symbols into that factor. We will
explain the reason for this below.
module class-products-with-maps {α : Level} {X : Type α} {fe𝓕α : funext (ov α) α} {fe₁ : funext ((ov α) ⊔ (suc (ov α))) (suc (ov α))} {fe₂ : funext (ov α) (ov α)} (𝒦 : Pred (Algebra α)(ov α)) where ℑ' : Type (ov α) ℑ' = Σ[ 𝑨 ∈ (Algebra α) ] ((𝑨 ∈ S{α}{α} 𝒦) × (X → ∣ 𝑨 ∣))
Notice that the second component of this dependent pair type is
(𝑨 ∈ 𝒦) × (X → ∣ 𝑨 ∣)
. In previous versions of the [UALib][] this second
component was simply 𝑨 ∈ 𝒦
, until we realized that adding the type X → ∣ 𝑨 ∣
is quite useful. Later we will see exactly why, but for now suffice it to say that
a map of type X → ∣ 𝑨 ∣
may be viewed abstractly as an ambient context, or
more concretely, as an assignment of values in ∣ 𝑨 ∣
to variable symbols in
X
. When computing with or reasoning about products, while we don’t want to
rigidly impose a context in advance, want do want to lay our hands on whatever
context is ultimately assumed. Including the “context map” inside the index type
ℑ
of the product turns out to be a convenient way to achieve this flexibility.
Taking the product over the index type ℑ
requires a function that maps an index
i : ℑ
to the corresponding algebra. Each i : ℑ
is a triple, say,
(𝑨 , p , h)
, where 𝑨 : Algebra α
, p : 𝑨 ∈ 𝒦
, and h : X → ∣ 𝑨 ∣
, so the
function mapping an index to the corresponding algebra is simply the first projection.
𝔄' : ℑ' → Algebra α 𝔄' = λ (i : ℑ') → ∣ i ∣
Finally, we define class-product
which represents the product of all members of
𝒦
.
class-product' : Algebra (ov α) class-product' = ⨅ 𝔄'
If p : 𝑨 ∈ 𝒦
and h : X → ∣ 𝑨 ∣
, we view the triple (𝑨 , p , h) ∈ ℑ
as an
index over the class, and so we can think of 𝔄 (𝑨 , p , h)
(which is simply 𝑨
)
as the projection of the product ⨅ 𝔄
onto the (𝑨 , p, h)
-th component.
class-prod-s-∈-ps : class-product' ∈ P{ov α}{ov α}(S 𝒦) class-prod-s-∈-ps = pisow psPllA (⨅≅ {fiu = fe₂}{fiw = fe𝓕α} llA≅A) where lA llA : ℑ' → Algebra (ov α) lA i = Lift-Alg (𝔄 i) (ov α) llA i = Lift-Alg (lA i) (ov α) slA : ∀ i → (lA i) ∈ S 𝒦 slA i = siso (fst ∥ i ∥) Lift-≅ psllA : ∀ i → (llA i) ∈ P (S 𝒦) psllA i = pbase (slA i) psPllA : ⨅ llA ∈ P (S 𝒦) psPllA = produ psllA llA≅A : ∀ i → (llA i) ≅ (𝔄' i) llA≅A i = ≅-trans (≅-sym Lift-≅)(≅-sym Lift-≅)
So, since PS⊆SP
, we see that that the product of all subalgebras of a class 𝒦
belongs to SP(𝒦)
.
class-prod-s-∈-sp : hfunext (ov α) (ov α) → class-product ∈ S(P 𝒦) class-prod-s-∈-sp hfe = PS⊆SP {fovu = fe₂} hfe class-prod-s-∈-ps
First we prove that the closure operator H
is compatible with identities that
hold in the given class.
open ≡-Reasoning private variable 𝓧 : Level open Term module _ (wd : SwellDef){X : Type 𝓧} {𝒦 : Pred (Algebra α)(ov α)} where H-id1 : (p q : Term X) → 𝒦 ⊫ p ≈ q → H{β = α} 𝒦 ⊫ p ≈ q H-id1 p q σ (hbase x) = ⊧-Lift-invar wd p q (σ x) H-id1 p q σ (hhimg{𝑨}{𝑪} HA (𝑩 , ((φ , φh) , φE))) b = goal where IH : 𝑨 ⊧ p ≈ q IH = (H-id1 p q σ) HA preim : X → ∣ 𝑨 ∣ preim x = Inv φ (φE (b x)) ζ : ∀ x → φ (preim x) ≡ b x ζ x = InvIsInverseʳ (φE (b x)) goal : (𝑩 ⟦ p ⟧) b ≡ (𝑩 ⟦ q ⟧) b goal = (𝑩 ⟦ p ⟧) b ≡⟨ wd 𝓧 α (𝑩 ⟦ p ⟧) b (φ ∘ preim )(λ i → (ζ i)⁻¹)⟩ (𝑩 ⟦ p ⟧)(φ ∘ preim) ≡⟨(comm-hom-term (wd 𝓥 α) 𝑩 (φ , φh) p preim)⁻¹ ⟩ φ((𝑨 ⟦ p ⟧) preim) ≡⟨ ≡.cong φ (IH preim) ⟩ φ((𝑨 ⟦ q ⟧) preim) ≡⟨ comm-hom-term (wd 𝓥 α) 𝑩 (φ , φh) q preim ⟩ (𝑩 ⟦ q ⟧)(φ ∘ preim) ≡⟨ wd 𝓧 α (𝑩 ⟦ q ⟧)(φ ∘ preim) b ζ ⟩ (𝑩 ⟦ q ⟧) b ∎
The converse of the foregoing result is almost too obvious to bother with. Nonetheless, we formalize it for completeness.
H-id2 : ∀ {β} → (p q : Term X) → H{β = β} 𝒦 ⊫ p ≈ q → 𝒦 ⊫ p ≈ q H-id2 p q Hpq KA = ⊧-lower-invar wd p q (Hpq (hbase KA))
S-id1 : (p q : Term X) → 𝒦 ⊫ p ≈ q → S{β = α} 𝒦 ⊫ p ≈ q S-id1 p q σ (sbase x) = ⊧-Lift-invar wd p q (σ x) S-id1 p q σ (slift x) = ⊧-Lift-invar wd p q ((S-id1 p q σ) x) S-id1 p q σ (ssub{𝑨}{𝑩} sA B≤A) = ⊧-S-class-invar wd p q goal ν where --Apply S-⊧ to the class 𝒦 ∪ { 𝑨 } τ : 𝑨 ⊧ p ≈ q τ = S-id1 p q σ sA Apq : { 𝑨 } ⊫ p ≈ q Apq ≡.refl = τ goal : (𝒦 ∪ { 𝑨 }) ⊫ p ≈ q goal {𝑩} (inl x) = σ x goal {𝑩} (inr y) = Apq y ν : SubalgebraOfClass (λ z → (𝒦 ∪ { 𝑨 }) (Data.Product.proj₁ z , Data.Product.proj₂ z)) ν = (𝑩 , 𝑨 , (𝑩 , B≤A) , _⊎_.inj₂ ≡.refl , ≅-refl) S-id1 p q σ (siso{𝑨}{𝑩} x x₁) = ⊧-I-invar wd 𝑩 p q (S-id1 p q σ x) x₁
Again, the obvious converse is barely worth the bits needed to formalize it.
S-id2 : ∀{β}(p q : Term X) → S{β = β}𝒦 ⊫ p ≈ q → 𝒦 ⊫ p ≈ q S-id2 p q Spq {𝑨} KA = ⊧-lower-invar wd p q (Spq (sbase KA))
module _ (fe : DFunExt)(wd : SwellDef){X : Type 𝓧} {𝒦 : Pred (Algebra α)(ov α)} where P-id1 : (p q : Term X) → 𝒦 ⊫ p ≈ q → P{β = α} 𝒦 ⊫ p ≈ q P-id1 p q σ (pbase x) = ⊧-Lift-invar wd p q (σ x) P-id1 p q σ (pliftu x) = ⊧-Lift-invar wd p q ((P-id1 p q σ) x) P-id1 p q σ (pliftw x) = ⊧-Lift-invar wd p q ((P-id1 p q σ) x) P-id1 p q σ (produ{I}{𝒜} x) = ⊧-P-lift-invar fe wd 𝒜 p q IH where IH : ∀ i → (Lift-Alg (𝒜 i) α) ⊧ p ≈ q IH i = ⊧-Lift-invar wd p q ((P-id1 p q σ) (x i)) P-id1 p q σ (prodw{I}{𝒜} x) = ⊧-P-lift-invar fe wd 𝒜 p q IH where IH : ∀ i → (Lift-Alg (𝒜 i) α) ⊧ p ≈ q IH i = ⊧-Lift-invar wd p q ((P-id1 p q σ) (x i)) P-id1 p q σ (pisow{𝑨}{𝑩} x y) = ⊧-I-invar wd 𝑩 p q (P-id1 p q σ x) y
and conversely,
module _ (wd : SwellDef){X : Type 𝓧} {𝒦 : Pred (Algebra α)(ov α)} where P-id2 : ∀ {β}(p q : Term X) → P{β = β} 𝒦 ⊫ p ≈ q → 𝒦 ⊫ p ≈ q P-id2 p q PKpq KA = ⊧-lower-invar wd p q (PKpq (pbase KA))
Finally, we prove the analogous preservation lemmas for the closure operator V
.
module Vid (fe : DFunExt)(wd : SwellDef) {𝓧 : Level} {X : Type 𝓧}{𝒦 : Pred (Algebra α)(ov α)} where V-id1 : (p q : Term X) → 𝒦 ⊫ p ≈ q → V{β = α} 𝒦 ⊫ p ≈ q V-id1 p q σ (vbase x) = ⊧-Lift-invar wd p q (σ x) V-id1 p q σ (vlift{𝑨} x) = ⊧-Lift-invar wd p q ((V-id1 p q σ) x) V-id1 p q σ (vliftw{𝑨} x) = ⊧-Lift-invar wd p q ((V-id1 p q σ) x) V-id1 p q σ (vhimg{𝑨}{𝑪}VA (𝑩 , ((φ , φh) , φE))) b = goal where IH : 𝑨 ⊧ p ≈ q IH = V-id1 p q σ VA preim : X → ∣ 𝑨 ∣ preim x = Inv φ (φE (b x)) ζ : ∀ x → φ (preim x) ≡ b x ζ x = InvIsInverseʳ (φE (b x)) goal : (𝑩 ⟦ p ⟧) b ≡ (𝑩 ⟦ q ⟧) b goal = (𝑩 ⟦ p ⟧) b ≡⟨ wd 𝓧 α (𝑩 ⟦ p ⟧) b (φ ∘ preim )(λ i → (ζ i)⁻¹)⟩ (𝑩 ⟦ p ⟧)(φ ∘ preim) ≡⟨(comm-hom-term (wd 𝓥 α) 𝑩 (φ , φh) p preim)⁻¹ ⟩ φ((𝑨 ⟦ p ⟧) preim) ≡⟨ ≡.cong φ (IH preim) ⟩ φ((𝑨 ⟦ q ⟧) preim) ≡⟨ comm-hom-term (wd 𝓥 α) 𝑩 (φ , φh) q preim ⟩ (𝑩 ⟦ q ⟧)(φ ∘ preim) ≡⟨ wd 𝓧 α (𝑩 ⟦ q ⟧)(φ ∘ preim) b ζ ⟩ (𝑩 ⟦ q ⟧) b ∎ V-id1 p q σ ( vssubw {𝑨}{𝑩} VA B≤A ) = ⊧-S-class-invar wd p q goal (𝑩 , 𝑨 , (𝑩 , B≤A) , inr ≡.refl , ≅-refl) where IH : 𝑨 ⊧ p ≈ q IH = V-id1 p q σ VA Asinglepq : { 𝑨 } ⊫ p ≈ q Asinglepq ≡.refl = IH goal : (𝒦 ∪ { 𝑨 }) ⊫ p ≈ q goal {𝑩} (inl x) = σ x goal {𝑩} (inr y) = Asinglepq y V-id1 p q σ (vprodu{I}{𝒜} V𝒜) = ⊧-P-invar fe wd 𝒜 p q λ i → V-id1 p q σ (V𝒜 i) V-id1 p q σ (vprodw{I}{𝒜} V𝒜) = ⊧-P-invar fe wd 𝒜 p q λ i → V-id1 p q σ (V𝒜 i) V-id1 p q σ (visou{𝑨}{𝑩} VA A≅B) = ⊧-I-invar wd 𝑩 p q (V-id1 p q σ VA) A≅B V-id1 p q σ (visow{𝑨}{𝑩} VA A≅B) = ⊧-I-invar wd 𝑩 p q (V-id1 p q σ VA) A≅B module Vid' (fe : DFunExt)(wd : SwellDef) {𝓧 : Level}{X : Type 𝓧}{𝒦 : Pred (Algebra α)(ov α)} where open Vid fe wd {𝓧}{X}{𝒦} public V-id1' : (p q : Term X) → 𝒦 ⊫ p ≈ q → V{β = β} 𝒦 ⊫ p ≈ q V-id1' p q σ (vbase x) = ⊧-Lift-invar wd p q (σ x) V-id1' p q σ (vlift{𝑨} x) = ⊧-Lift-invar wd p q ((V-id1 p q σ) x) V-id1' p q σ (vliftw{𝑨} x) = ⊧-Lift-invar wd p q ((V-id1' p q σ) x) V-id1' p q σ (vhimg{𝑨}{𝑪} VA (𝑩 , ((φ , φh) , φE))) b = goal where IH : 𝑨 ⊧ p ≈ q IH = V-id1' p q σ VA preim : X → ∣ 𝑨 ∣ preim x = Inv φ (φE (b x)) ζ : ∀ x → φ (preim x) ≡ b x ζ x = InvIsInverseʳ (φE (b x)) goal : (𝑩 ⟦ p ⟧) b ≡ (𝑩 ⟦ q ⟧) b goal = (𝑩 ⟦ p ⟧) b ≡⟨ wd 𝓧 _ (𝑩 ⟦ p ⟧) b (φ ∘ preim )(λ i → (ζ i)⁻¹)⟩ (𝑩 ⟦ p ⟧)(φ ∘ preim) ≡⟨(comm-hom-term (wd 𝓥 _) 𝑩 (φ , φh) p preim)⁻¹ ⟩ φ((𝑨 ⟦ p ⟧) preim) ≡⟨ ≡.cong φ (IH preim) ⟩ φ((𝑨 ⟦ q ⟧) preim) ≡⟨ comm-hom-term (wd 𝓥 _) 𝑩 (φ , φh) q preim ⟩ (𝑩 ⟦ q ⟧)(φ ∘ preim) ≡⟨ wd 𝓧 _ (𝑩 ⟦ q ⟧)(φ ∘ preim) b ζ ⟩ (𝑩 ⟦ q ⟧) b ∎ V-id1' p q σ (vssubw {𝑨}{𝑩} VA B≤A) = ⊧-S-invar wd 𝑩 {p}{q}(V-id1' p q σ VA) B≤A V-id1' p q σ (vprodu{I}{𝒜} V𝒜) = ⊧-P-invar fe wd 𝒜 p q λ i → V-id1 p q σ (V𝒜 i) V-id1' p q σ (vprodw{I}{𝒜} V𝒜) = ⊧-P-invar fe wd 𝒜 p q λ i → V-id1' p q σ (V𝒜 i) V-id1' p q σ (visou {𝑨}{𝑩} VA A≅B) = ⊧-I-invar wd 𝑩 p q (V-id1 p q σ VA) A≅B V-id1' p q σ (visow{𝑨}{𝑩} VA A≅B) = ⊧-I-invar wd 𝑩 p q (V-id1' p q σ VA)A≅B
From V-id1
it follows that if 𝒦 is a class of structures, then the set of
identities modeled by all structures in 𝒦
is equivalent to the set of identities
modeled by all structures in V 𝒦
. In other terms, Th (V 𝒦)
is precisely the
set of identities modeled by 𝒦
. We formalize this observation as follows.
module _ (fe : DFunExt)(wd : SwellDef) {𝓧 : Level}{X : Type 𝓧} {𝒦 : Pred (Algebra α)(ov α)} where ovu lovu : Level ovu = ov α lovu = suc (ov α) 𝕍 : Pred (Algebra lovu) (suc lovu) 𝕍 = V{α}{lovu} 𝒦 𝒱 : Pred (Algebra ovu) lovu 𝒱 = V{β = ovu} 𝒦 open Vid' fe wd {𝓧}{X}{𝒦} public class-ids-⇒ : (p q : ∣ 𝑻 X ∣) → 𝒦 ⊫ p ≈ q → (p , q) ∈ Th 𝒱 class-ids-⇒ p q pKq VCloA = V-id1' p q pKq VCloA class-ids : (p q : ∣ 𝑻 X ∣) → 𝒦 ⊫ p ≈ q → (p , q) ∈ Th 𝕍 class-ids p q pKq VCloA = V-id1' p q pKq VCloA class-ids-⇐ : (p q : ∣ 𝑻 X ∣) → (p , q) ∈ Th 𝒱 → 𝒦 ⊫ p ≈ q class-ids-⇐ p q Thpq {𝑨} KA = ⊧-lower-invar wd p q (Thpq (vbase KA))
Once again, and for the last time, completeness dictates that we formalize the
coverse of V-id1
, however obvious it may be.
module _ (wd : SwellDef){X : Type 𝓧}{𝒦 : Pred (Algebra α)(ov α)} where V-id2 : (p q : Term X) → (V{β = β} 𝒦 ⊫ p ≈ q) → (𝒦 ⊫ p ≈ q) V-id2 p q Vpq {𝑨} KA = ⊧-lower-invar wd p q (Vpq (vbase KA))