This is the Base.Homomorphisms.Noether module of the Agda Universal Algebra Library.
{-# OPTIONS --without-K --exact-split --safe #-} open import Overture using ( 𝓞 ; 𝓥 ; Signature ) module Base.Homomorphisms.Noether {𝑆 : Signature 𝓞 𝓥} where -- Imports from Agda and the Agda Standard Library --------------------------------------- open import Data.Product using ( Σ-syntax ; _,_ ; _×_ ) renaming ( proj₁ to fst ; proj₂ to snd ) open import Function using ( _∘_ ; id ) open import Level using (Level ) open import Relation.Binary using ( IsEquivalence ) open import Relation.Binary.PropositionalEquality as ≡ using ( module ≡-Reasoning ; _≡_ ) -- Imports from agda-algebras -------------------------------------------------------------- open import Base.Relations using ( ⌞_⌟ ; mkblk ; ⟪_⟫ ) open import Overture using ( ∣_∣ ; ∥_∥ ; _⁻¹ ) open import Base.Functions using ( Image_∋_ ; IsInjective ; SurjInv ) using ( IsSurjective ; SurjInvIsInverseʳ ) open import Base.Algebras {𝑆 = 𝑆} using ( Algebra ; _̂_ ; Con ; IsCongruence ) open import Base.Homomorphisms.Kernels {𝑆 = 𝑆} using ( kercon ; ker[_⇒_]_↾_ ; πker ) open import Base.Equality using ( swelldef ; is-set ; blk-uip ; is-embedding ; monic-is-embedding|Set ) using ( pred-ext ; block-ext|uip ) open import Base.Homomorphisms.Basic {𝑆 = 𝑆} using ( hom ; is-homomorphism ; epi ; epi→hom ) private variable α β γ : Level
Here we formalize a version of the first homomorphism theorem, sometimes called Noether’s first homomorphism theorem, after Emmy Noether who was among the first proponents of the abstract approach to the subject that we now call “modern algebra”).
Informally, the theorem states that every homomorphism from 𝑨
to 𝑩
(𝑆
-algebras)
factors through the quotient algebra 𝑨 ╱ ker h
(𝑨
modulo the kernel of the given
homomorphism). In other terms, given h : hom 𝑨 𝑩
there exists φ : hom (𝑨 ╱ ker h) 𝑩
which, when composed with the canonical projection πker : 𝑨 ↠ 𝑨 ╱ ker h
, is equal to
h
; that is, h = φ ∘ πker
. Moreover, φ
is a monomorphism (injective homomorphism)
and is unique.
Our formal proof of this theorem will require function extensionality, proposition
extensionality, and a couple of truncation assumptions. The extensionality
assumptions are postulated using swelldef
and pred-ext
which were defined
in Base.Equality.Welldefined and Base.Equality.Extensionality. As for
truncation, to prove that φ
is injective we require
buip
: uniqueness of (block) identity proofs; given two blocks of the kernel
there is at most one proof that the blocks are equal;To prove that φ
is an embedding we require
Bset
: uniqueness of identity proofs in the codomain; that is, the codomain
∣ 𝑩 ∣
is assumed to be a set.Note that the classical, informal statement of the first homomorphism theorem does not
demand that φ
be an embedding (in our sense of having subsingleton fibers), and if
we left this out of the consequent of our formal theorem statement, then we could omit
from the antecedent the assumption that ∣ 𝑩 ∣
is a set.
Without further ado, we present our formalization of the first homomorphism theorem.
open ≡-Reasoning FirstHomTheorem|Set : (𝑨 : Algebra α)(𝑩 : Algebra β)(h : hom 𝑨 𝑩) {- extensionality assumptions -} (pe : pred-ext α β)(fe : swelldef 𝓥 β) {- truncation assumptions -} (Bset : is-set ∣ 𝑩 ∣) (buip : blk-uip ∣ 𝑨 ∣ ∣ kercon fe {𝑩} h ∣) ------------------------------------------------------------------------- → Σ[ φ ∈ hom (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩 ] ( ∣ h ∣ ≡ ∣ φ ∣ ∘ ∣ πker fe{𝑩}h ∣ × IsInjective ∣ φ ∣ × is-embedding ∣ φ ∣ ) FirstHomTheorem|Set 𝑨 𝑩 h pe fe Bset buip = (φ , φhom) , ≡.refl , φmon , φemb where θ : Con 𝑨 θ = kercon fe{𝑩} h ξ : IsEquivalence ∣ θ ∣ ξ = IsCongruence.is-equivalence ∥ θ ∥ φ : ∣ (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) ∣ → ∣ 𝑩 ∣ φ a = ∣ h ∣ ⌞ a ⌟ φhom : is-homomorphism (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩 φ φhom 𝑓 a = ∣ h ∣ ( (𝑓 ̂ 𝑨) (λ x → ⌞ a x ⌟) ) ≡⟨ ∥ h ∥ 𝑓 (λ x → ⌞ a x ⌟) ⟩ (𝑓 ̂ 𝑩) (∣ h ∣ ∘ (λ x → ⌞ a x ⌟)) ≡⟨ ≡.cong (𝑓 ̂ 𝑩) ≡.refl ⟩ (𝑓 ̂ 𝑩) (λ x → φ (a x)) ∎ φmon : IsInjective φ φmon {_ , mkblk u ≡.refl} {_ , mkblk v ≡.refl} φuv = block-ext|uip pe buip ξ φuv φemb : is-embedding φ φemb = monic-is-embedding|Set φ Bset φmon
Below we will prove that the homomorphism φ
, whose existence we just proved, is
unique (see NoetherHomUnique
), but first we show that if we add to the hypotheses
of the first homomorphism theorem the assumption that h
is surjective, then we
obtain the so-called first isomorphism theorem. Naturally, we let
FirstHomTheorem|Set
do most of the work.
FirstIsoTheorem|Set : (𝑨 : Algebra α) (𝑩 : Algebra β) (h : hom 𝑨 𝑩) {- extensionality assumptions -} (pe : pred-ext α β) (fe : swelldef 𝓥 β) {- truncation assumptions -} (Bset : is-set ∣ 𝑩 ∣) (buip : blk-uip ∣ 𝑨 ∣ ∣ kercon fe{𝑩}h ∣) → IsSurjective ∣ h ∣ → Σ[ f ∈ (epi (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩)] ( ∣ h ∣ ≡ ∣ f ∣ ∘ ∣ πker fe{𝑩}h ∣ × IsInjective ∣ f ∣ × is-embedding ∣ f ∣ ) FirstIsoTheorem|Set 𝑨 𝑩 h pe fe Bset buip hE = (fmap , fhom , fepic) , ≡.refl , (snd ∥ FHT ∥) where FHT = FirstHomTheorem|Set 𝑨 𝑩 h pe fe Bset buip fmap : ∣ ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe ∣ → ∣ 𝑩 ∣ fmap = fst ∣ FHT ∣ fhom : is-homomorphism (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩 fmap fhom = snd ∣ FHT ∣ fepic : IsSurjective fmap fepic b = Goal where a : ∣ 𝑨 ∣ a = SurjInv ∣ h ∣ hE b bfa : b ≡ fmap ⟪ a ⟫ bfa = ((SurjInvIsInverseʳ ∣ h ∣ hE) b)⁻¹ Goal : Image fmap ∋ b Goal = Image_∋_.eq ⟪ a ⟫ bfa
Now we prove that the homomorphism φ
, whose existence is guaranteed by FirstHomTheorem|Set
, is unique.
module _ {fe : swelldef 𝓥 β}(𝑨 : Algebra α)(𝑩 : Algebra β)(h : hom 𝑨 𝑩) where FirstHomUnique : (f g : hom (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩) → ∣ h ∣ ≡ ∣ f ∣ ∘ ∣ πker fe{𝑩}h ∣ → ∣ h ∣ ≡ ∣ g ∣ ∘ ∣ πker fe{𝑩}h ∣ → ∀ a → ∣ f ∣ a ≡ ∣ g ∣ a FirstHomUnique f g hfk hgk (_ , mkblk a ≡.refl) = ∣ f ∣ (_ , mkblk a ≡.refl) ≡⟨ ≡.cong-app(hfk ⁻¹)a ⟩ ∣ h ∣ a ≡⟨ ≡.cong-app(hgk)a ⟩ ∣ g ∣ (_ , mkblk a ≡.refl) ∎
If, in addition, we postulate extensionality of functions defined on the domain
ker[ 𝑨 ⇒ 𝑩 ] h
, then we obtain the following variation of the last result.
(See Base.Equality.Truncation for a discussion of truncation, sets,
and uniqueness of identity proofs.)
fe-FirstHomUnique : {fuww : funext (α ⊔ lsuc β) β}(f g : hom (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩)
→ ∣ h ∣ ≡ ∣ f ∣ ∘ ∣ πker fe{𝑩}h ∣
→ ∣ h ∣ ≡ ∣ g ∣ ∘ ∣ πker fe{𝑩}h ∣
→ ∣ f ∣ ≡ ∣ g ∣
fe-FirstHomUnique {fuww} f g hfk hgk = fuww (NoetherHomUnique f g hfk hgk)
The proof of NoetherHomUnique
goes through for the special case of epimorphisms, as we now verify.
FirstIsoUnique : (f g : epi (ker[ 𝑨 ⇒ 𝑩 ] h ↾ fe) 𝑩) → ∣ h ∣ ≡ ∣ f ∣ ∘ ∣ πker fe{𝑩}h ∣ → ∣ h ∣ ≡ ∣ g ∣ ∘ ∣ πker fe{𝑩}h ∣ → ∀ a → ∣ f ∣ a ≡ ∣ g ∣ a FirstIsoUnique f g hfk hgk = FirstHomUnique (epi→hom 𝑩 f) (epi→hom 𝑩 g) hfk hgk