{-# OPTIONS --without-K --exact-split --safe #-} open import Overture using (𝓞 ; 𝓥 ; Signature) module Setoid.Varieties.HSP {𝑆 : Signature 𝓞 𝓥} where -- Imports from Agda and the Agda Standard Library ------------------------------- open import Agda.Primitive using () renaming ( Set to Type ) open import Data.Product using ( _,_ ; Σ-syntax ; _×_ ) renaming ( proj₁ to fst ; proj₂ to snd ) open import Function using () renaming ( Func to _⟶_ ) open import Level using ( Level ; _⊔_ ) open import Relation.Binary using ( Setoid ) open import Relation.Unary using ( Pred ; _∈_ ; _⊆_ ) -- -- Imports from the Agda Universal Algebra Library ---------------------------- open import Overture using ( ∣_∣ ; ∥_∥ ) open import Setoid.Relations using ( fkerPred ) open import Setoid.Algebras {𝑆 = 𝑆} using ( Algebra ; ov ; Lift-Alg ; ⨅ ) open import Setoid.Subalgebras {𝑆 = 𝑆} using ( _≤_ ; mon→≤ ) open import Setoid.Homomorphisms {𝑆 = 𝑆} using ( hom ; mon ; IsMon ; IsHom ; epi ; epi→ontohom ; ⨅-hom-co ; HomFactor ; ≅-refl ; _IsHomImageOf_ ) open import Setoid.Terms {𝑆 = 𝑆} using ( module Environment ; 𝑻 ; lift-hom ; free-lift ; free-lift-interp ) open import Setoid.Varieties.Closure {𝑆 = 𝑆} using ( S ; V ; P ; S-idem ; V-≅-lc ) open import Setoid.Varieties.Preservation {𝑆 = 𝑆} using ( S-id2 ; PS⊆SP ) open import Setoid.Varieties.FreeAlgebras {𝑆 = 𝑆} using ( module FreeHom ; 𝔽-ModTh-epi-lift ) open import Setoid.Varieties.SoundAndComplete {𝑆 = 𝑆} using ( module FreeAlgebra ; _⊫_ ; _≈̇_ ; _⊢_▹_≈_ ; Mod ; Th ) open _⟶_ using () renaming ( f to _⟨$⟩_ ) open Setoid using ( Carrier ) open Algebra using ( Domain ) open Environment using ( Env ) module _ {α ρᵃ ℓ : Level} (𝒦 : Pred(Algebra α ρᵃ) (α ⊔ ρᵃ ⊔ ov ℓ)) {X : Type (α ⊔ ρᵃ ⊔ ℓ)} where private ι = ov(α ⊔ ρᵃ ⊔ ℓ) open FreeHom (α ⊔ ρᵃ ⊔ ℓ) {α}{ρᵃ}{ℓ}{𝒦} open FreeAlgebra {ι = ι}{I = ℐ} ℰ using ( 𝔽[_] )
We want to pair each (𝑨 , p)
(where p : 𝑨 ∈ S 𝒦) with an environment
ρ : X → ∣ 𝑨 ∣
so that we can quantify over all algebras and all
assignments of values in the domain ∣ 𝑨 ∣
to variables in X
.
ℑ⁺ : Type ι ℑ⁺ = Σ[ 𝑨 ∈ (Algebra α ρᵃ) ] (𝑨 ∈ S ℓ 𝒦) × (Carrier (Env 𝑨 X)) 𝔄⁺ : ℑ⁺ → Algebra α ρᵃ 𝔄⁺ i = ∣ i ∣ ℭ : Algebra ι ι ℭ = ⨅ 𝔄⁺
Next we define a useful type, skEqual
, which we use to represent a term identity p ≈ q
for any
given i = (𝑨 , sA , ρ)
(where 𝑨
is an algebra, sA : 𝑨 ∈ S 𝒦
is a proof that 𝑨
belongs
to S 𝒦
, and ρ
is a mapping from X
to the domain of 𝑨
). Then we prove AllEqual⊆ker𝔽
which
asserts that if the identity p ≈ q
holds in all 𝑨 ∈ S 𝒦
(for all environments), then p ≈ q
holds in the relatively free algebra 𝔽[ X ]
; equivalently, the pair (p , q)
belongs to the
kernel of the natural homomorphism from 𝑻 X
onto 𝔽[ X ]
. We will use this fact below to prove
that there is a monomorphism from 𝔽[ X ]
into ℭ
, and thus 𝔽[ X ]
is a subalgebra of ℭ,
so belongs to S (P 𝒦)
.
skEqual : (i : ℑ⁺) → ∀{p q} → Type ρᵃ skEqual i {p}{q} = ⟦ p ⟧ ⟨$⟩ snd ∥ i ∥ ≈ ⟦ q ⟧ ⟨$⟩ snd ∥ i ∥ where open Setoid (Domain (𝔄⁺ i)) using ( _≈_ ) open Environment (𝔄⁺ i) using ( ⟦_⟧ ) AllEqual⊆ker𝔽 : ∀ {p q} → (∀ i → skEqual i {p}{q}) → (p , q) ∈ fkerPred ∣ hom𝔽[ X ] ∣ AllEqual⊆ker𝔽 {p} {q} x = Goal where open Algebra 𝔽[ X ] using () renaming ( Domain to F ; Interp to InterpF ) open Setoid F using () renaming ( _≈_ to _≈F≈_ ; refl to reflF ) S𝒦⊫pq : S{β = α}{ρᵃ} ℓ 𝒦 ⊫ (p ≈̇ q) S𝒦⊫pq 𝑨 sA ρ = x (𝑨 , sA , ρ) Goal : p ≈F≈ q Goal = 𝒦⊫→ℰ⊢ (S-id2{ℓ = ℓ}{p = p}{q} S𝒦⊫pq) homℭ : hom (𝑻 X) ℭ homℭ = ⨅-hom-co 𝔄⁺ h where h : ∀ i → hom (𝑻 X) (𝔄⁺ i) h i = lift-hom (snd ∥ i ∥) open Algebra 𝔽[ X ] using () renaming ( Domain to F ; Interp to InterpF ) open Setoid F using () renaming (refl to reflF ; _≈_ to _≈F≈_ ; Carrier to ∣F∣) ker𝔽⊆kerℭ : fkerPred ∣ hom𝔽[ X ] ∣ ⊆ fkerPred ∣ homℭ ∣ ker𝔽⊆kerℭ {p , q} pKq (𝑨 , sA , ρ) = Goal where open Setoid (Domain 𝑨) using ( _≈_ ; sym ; trans ) open Environment 𝑨 using ( ⟦_⟧ ) fl : ∀ t → ⟦ t ⟧ ⟨$⟩ ρ ≈ free-lift ρ t fl t = free-lift-interp {𝑨 = 𝑨} ρ t subgoal : ⟦ p ⟧ ⟨$⟩ ρ ≈ ⟦ q ⟧ ⟨$⟩ ρ subgoal = ker𝔽⊆Equal{𝑨 = 𝑨}{sA} pKq ρ Goal : (free-lift{𝑨 = 𝑨} ρ p) ≈ (free-lift{𝑨 = 𝑨} ρ q) Goal = trans (sym (fl p)) (trans subgoal (fl q)) hom𝔽ℭ : hom 𝔽[ X ] ℭ hom𝔽ℭ = ∣ HomFactor ℭ homℭ hom𝔽[ X ] ker𝔽⊆kerℭ hom𝔽[ X ]-is-epic ∣ open Environment ℭ kerℭ⊆ker𝔽 : ∀{p q} → (p , q) ∈ fkerPred ∣ homℭ ∣ → (p , q) ∈ fkerPred ∣ hom𝔽[ X ] ∣ kerℭ⊆ker𝔽 {p}{q} pKq = E⊢pq where pqEqual : ∀ i → skEqual i {p}{q} pqEqual i = goal where open Environment (𝔄⁺ i) using () renaming ( ⟦_⟧ to ⟦_⟧ᵢ ) open Setoid (Domain (𝔄⁺ i)) using ( _≈_ ; sym ; trans ) goal : ⟦ p ⟧ᵢ ⟨$⟩ snd ∥ i ∥ ≈ ⟦ q ⟧ᵢ ⟨$⟩ snd ∥ i ∥ goal = trans (free-lift-interp{𝑨 = ∣ i ∣}(snd ∥ i ∥) p) (trans (pKq i)(sym (free-lift-interp{𝑨 = ∣ i ∣} (snd ∥ i ∥) q))) E⊢pq : ℰ ⊢ X ▹ p ≈ q E⊢pq = AllEqual⊆ker𝔽 pqEqual mon𝔽ℭ : mon 𝔽[ X ] ℭ mon𝔽ℭ = ∣ hom𝔽ℭ ∣ , isMon where open IsMon open IsHom isMon : IsMon 𝔽[ X ] ℭ ∣ hom𝔽ℭ ∣ isHom isMon = ∥ hom𝔽ℭ ∥ isInjective isMon {p} {q} φpq = kerℭ⊆ker𝔽 φpq
Now that we have proved the existence of a monomorphism from 𝔽[ X ]
to ℭ
we are in a position
to prove that 𝔽[ X ]
is a subalgebra of ℭ, so belongs to S (P 𝒦)
. In fact, we will show
that 𝔽[ X ]
is a subalgebra of the lift of ℭ
, denoted ℓℭ
.
𝔽≤ℭ : 𝔽[ X ] ≤ ℭ 𝔽≤ℭ = mon→≤ mon𝔽ℭ SP𝔽 : 𝔽[ X ] ∈ S ι (P ℓ ι 𝒦) SP𝔽 = S-idem SSP𝔽 where PSℭ : ℭ ∈ P (α ⊔ ρᵃ ⊔ ℓ) ι (S ℓ 𝒦) PSℭ = ℑ⁺ , (𝔄⁺ , ((λ i → fst ∥ i ∥) , ≅-refl)) SPℭ : ℭ ∈ S ι (P ℓ ι 𝒦) SPℭ = PS⊆SP {ℓ = ℓ} PSℭ SSP𝔽 : 𝔽[ X ] ∈ S ι (S ι (P ℓ ι 𝒦)) SSP𝔽 = ℭ , (SPℭ , 𝔽≤ℭ)
Finally, we are in a position to prove Birkhoff’s celebrated variety theorem.
module _ {α ρᵃ ℓ : Level}{𝒦 : Pred(Algebra α ρᵃ) (α ⊔ ρᵃ ⊔ ov ℓ)} where private ι = ov(α ⊔ ρᵃ ⊔ ℓ) open FreeHom (α ⊔ ρᵃ ⊔ ℓ) {α}{ρᵃ}{ℓ}{𝒦} open FreeAlgebra {ι = ι}{I = ℐ} ℰ using ( 𝔽[_] ) Birkhoff : ∀ 𝑨 → 𝑨 ∈ Mod (Th (V ℓ ι 𝒦)) → 𝑨 ∈ V ℓ ι 𝒦 Birkhoff 𝑨 ModThA = V-≅-lc{α}{ρᵃ}{ℓ} 𝒦 𝑨 VlA where open Setoid (Domain 𝑨) using () renaming ( Carrier to ∣A∣ ) sp𝔽A : 𝔽[ ∣A∣ ] ∈ S{ι} ι (P ℓ ι 𝒦) sp𝔽A = SP𝔽{ℓ = ℓ} 𝒦 epi𝔽lA : epi 𝔽[ ∣A∣ ] (Lift-Alg 𝑨 ι ι) epi𝔽lA = 𝔽-ModTh-epi-lift{ℓ = ℓ} (λ {p q} → ModThA{p = p}{q}) lAimg𝔽A : Lift-Alg 𝑨 ι ι IsHomImageOf 𝔽[ ∣A∣ ] lAimg𝔽A = epi→ontohom 𝔽[ ∣A∣ ] (Lift-Alg 𝑨 ι ι) epi𝔽lA VlA : Lift-Alg 𝑨 ι ι ∈ V ℓ ι 𝒦 VlA = 𝔽[ ∣A∣ ] , sp𝔽A , lAimg𝔽A
The converse inclusion, V 𝒦 ⊆ Mod (Th (V 𝒦))
, is a simple consequence of the
fact that Mod Th
is a closure operator. Nonetheless, completeness demands
that we formalize this inclusion as well, however trivial the proof.
module _ {𝑨 : Algebra α ρᵃ} where open Setoid (Domain 𝑨) using () renaming ( Carrier to ∣A∣ ) Birkhoff-converse : 𝑨 ∈ V{α}{ρᵃ}{α}{ρᵃ}{α}{ρᵃ} ℓ ι 𝒦 → 𝑨 ∈ Mod{X = ∣A∣} (Th (V ℓ ι 𝒦)) Birkhoff-converse vA pThq = pThq 𝑨 vA
We have thus proved that every variety is an equational class.
Readers familiar with the classical formulation of the Birkhoff HSP theorem as an “if and only if” assertion might worry that the proof is still incomplete. However, recall that in the Setoid.Varieties.Preservation module we proved the following identity preservation lemma:
V-id1 : 𝒦 ⊫ p ≈̇ q → V 𝒦 ⊫ p ≈̇ q
Thus, if 𝒦
is an equational class—that is, if 𝒦 is the class of algebras
satisfying all identities in some set—then V 𝒦
⊆ 𝒦. On the other hand, we
proved that
V` is expansive in the Setoid.Varieties.Closure module:
V-expa : 𝒦 ⊆ V 𝒦
so 𝒦
(= V 𝒦
= HSP 𝒦
) is a variety.
Taken together, V-id1
and V-expa
constitute formal proof that every equational
class is a variety.
This completes the formal proof of Birkhoff’s variety theorem.