↑ Top


The HSP Theorem


{-# OPTIONS --without-K --exact-split --safe #-}

open import Overture using (𝓞 ; 𝓥 ; Signature)

module Setoid.Varieties.HSP {𝑆 : Signature 𝓞 𝓥} where

-- Imports from Agda and the Agda Standard Library -------------------------------
open import Agda.Primitive   using () renaming ( Set to Type )
open import Data.Product     using ( _,_ ; Σ-syntax ; _×_ )
                             renaming ( proj₁ to fst ; proj₂ to snd )
open import Function         using () renaming ( Func to _⟶_ )
open import Level            using ( Level ; _⊔_ )
open import Relation.Binary  using ( Setoid )
open import Relation.Unary   using ( Pred ; _∈_ ; _⊆_ )

-- -- Imports from the Agda Universal Algebra Library ----------------------------
open  import Overture          using ( ∣_∣ ; ∥_∥ )
open  import Setoid.Relations  using ( fkerPred )

open  import Setoid.Algebras {𝑆 = 𝑆}     using ( Algebra ; ov ; Lift-Alg ;  )
open  import Setoid.Subalgebras {𝑆 = 𝑆}  using ( _≤_ ; mon→≤ )
open  import Setoid.Homomorphisms {𝑆 = 𝑆}
      using  ( hom ; mon ; IsMon ; IsHom ; epi ; epi→ontohom ; ⨅-hom-co
             ; HomFactor ; ≅-refl ; _IsHomImageOf_ )

open  import Setoid.Terms {𝑆 = 𝑆}
      using ( module Environment ; 𝑻 ; lift-hom ; free-lift ; free-lift-interp )

open  import Setoid.Varieties.Closure {𝑆 = 𝑆}
      using ( S ; V ; P ; S-idem ; V-≅-lc )

open  import Setoid.Varieties.Preservation {𝑆 = 𝑆}
      using ( S-id2 ; PS⊆SP )

open  import Setoid.Varieties.FreeAlgebras {𝑆 = 𝑆}
      using ( module FreeHom ; 𝔽-ModTh-epi-lift )

open  import Setoid.Varieties.SoundAndComplete  {𝑆 = 𝑆}
      using ( module FreeAlgebra ; _⊫_ ; _≈̇_ ;  _⊢_▹_≈_ ; Mod ; Th )

open _⟶_          using () renaming ( f to _⟨$⟩_ )
open Setoid       using ( Carrier )
open Algebra      using ( Domain )
open Environment  using ( Env )

module _  {α ρᵃ  : Level}
          (𝒦 : Pred(Algebra α ρᵃ) (α  ρᵃ  ov ))
          {X : Type (α  ρᵃ  )} where

 private ι = ov(α  ρᵃ  )

 open FreeHom (α  ρᵃ  ) {α}{ρᵃ}{}{𝒦}
 open FreeAlgebra {ι = ι}{I = }  using ( 𝔽[_] )

We want to pair each (𝑨 , p) (where p : 𝑨 ∈ S 𝒦) with an environment ρ : X → ∣ 𝑨 ∣ so that we can quantify over all algebras and all assignments of values in the domain ∣ 𝑨 ∣ to variables in X.


 ℑ⁺ : Type ι
 ℑ⁺ = Σ[ 𝑨  (Algebra α ρᵃ) ] (𝑨  S  𝒦) × (Carrier (Env 𝑨 X))

 𝔄⁺ : ℑ⁺  Algebra α ρᵃ
 𝔄⁺ i =  i 

  : Algebra ι ι
  =  𝔄⁺

Next we define a useful type, skEqual, which we use to represent a term identity p ≈ q for any given i = (𝑨 , sA , ρ) (where 𝑨 is an algebra, sA : 𝑨 ∈ S 𝒦 is a proof that 𝑨 belongs to S 𝒦, and ρ is a mapping from X to the domain of 𝑨). Then we prove AllEqual⊆ker𝔽 which asserts that if the identity p ≈ q holds in all 𝑨 ∈ S 𝒦 (for all environments), then p ≈ q holds in the relatively free algebra 𝔽[ X ]; equivalently, the pair (p , q) belongs to the kernel of the natural homomorphism from 𝑻 X onto 𝔽[ X ]. We will use this fact below to prove that there is a monomorphism from 𝔽[ X ] into , and thus 𝔽[ X ] is a subalgebra of ℭ, so belongs to S (P 𝒦).


 skEqual : (i : ℑ⁺)  ∀{p q}  Type ρᵃ
 skEqual i {p}{q} =  p  ⟨$⟩ snd  i    q  ⟨$⟩ snd  i 
  where
  open Setoid (Domain (𝔄⁺ i)) using ( _≈_ )
  open Environment (𝔄⁺ i) using ( ⟦_⟧ )

 AllEqual⊆ker𝔽 :   {p q}
                 (∀ i  skEqual i {p}{q})  (p , q)  fkerPred  hom𝔽[ X ] 

 AllEqual⊆ker𝔽 {p} {q} x = Goal
  where
  open Algebra 𝔽[ X ]  using () renaming ( Domain to F ; Interp to InterpF )
  open Setoid F        using () renaming ( _≈_  to _≈F≈_ ; refl to reflF )
  S𝒦⊫pq : S{β = α}{ρᵃ}  𝒦  (p ≈̇ q)
  S𝒦⊫pq 𝑨 sA ρ = x (𝑨 , sA , ρ)
  Goal : p ≈F≈ q
  Goal = 𝒦⊫→ℰ⊢ (S-id2{ = }{p = p}{q} S𝒦⊫pq)

 homℭ : hom (𝑻 X) 
 homℭ = ⨅-hom-co 𝔄⁺ h
  where
  h :  i  hom (𝑻 X) (𝔄⁺ i)
  h i = lift-hom (snd  i )

 open Algebra 𝔽[ X ]  using () renaming ( Domain to F ; Interp to InterpF )
 open Setoid F        using () renaming (refl to reflF ; _≈_ to _≈F≈_ ; Carrier to ∣F∣)


 ker𝔽⊆kerℭ : fkerPred  hom𝔽[ X ]   fkerPred  homℭ 
 ker𝔽⊆kerℭ {p , q} pKq (𝑨 , sA , ρ) = Goal
  where
  open Setoid (Domain 𝑨)  using ( _≈_ ; sym ; trans )
  open Environment 𝑨      using ( ⟦_⟧ )
  fl :  t   t  ⟨$⟩ ρ  free-lift ρ t
  fl t = free-lift-interp {𝑨 = 𝑨} ρ t
  subgoal :  p  ⟨$⟩ ρ   q  ⟨$⟩ ρ
  subgoal = ker𝔽⊆Equal{𝑨 = 𝑨}{sA} pKq ρ
  Goal : (free-lift{𝑨 = 𝑨} ρ p)  (free-lift{𝑨 = 𝑨} ρ q)
  Goal = trans (sym (fl p)) (trans subgoal (fl q))


 hom𝔽ℭ : hom 𝔽[ X ] 
 hom𝔽ℭ =  HomFactor  homℭ hom𝔽[ X ] ker𝔽⊆kerℭ hom𝔽[ X ]-is-epic 

 open Environment 

 kerℭ⊆ker𝔽 : ∀{p q}  (p , q)  fkerPred  homℭ   (p , q)  fkerPred  hom𝔽[ X ] 
 kerℭ⊆ker𝔽 {p}{q} pKq = E⊢pq
  where
  pqEqual :  i  skEqual i {p}{q}
  pqEqual i = goal
   where
   open Environment (𝔄⁺ i)      using () renaming ( ⟦_⟧ to ⟦_⟧ᵢ )
   open Setoid (Domain (𝔄⁺ i))  using ( _≈_ ; sym ; trans )
   goal :  p ⟧ᵢ ⟨$⟩ snd  i    q ⟧ᵢ ⟨$⟩ snd  i 
   goal = trans  (free-lift-interp{𝑨 =  i }(snd  i ) p)
                 (trans (pKq i)(sym (free-lift-interp{𝑨 =  i } (snd  i ) q)))
  E⊢pq :   X  p  q
  E⊢pq = AllEqual⊆ker𝔽 pqEqual


 mon𝔽ℭ : mon 𝔽[ X ] 
 mon𝔽ℭ =  hom𝔽ℭ  , isMon
  where
  open IsMon
  open IsHom
  isMon : IsMon 𝔽[ X ]   hom𝔽ℭ 
  isHom isMon =  hom𝔽ℭ 
  isInjective isMon {p} {q} φpq = kerℭ⊆ker𝔽 φpq

Now that we have proved the existence of a monomorphism from 𝔽[ X ] to we are in a position to prove that 𝔽[ X ] is a subalgebra of ℭ, so belongs to S (P 𝒦). In fact, we will show that 𝔽[ X ] is a subalgebra of the lift of , denoted ℓℭ.


 𝔽≤ℭ : 𝔽[ X ]  
 𝔽≤ℭ = mon→≤ mon𝔽ℭ

 SP𝔽 : 𝔽[ X ]  S ι (P  ι 𝒦)
 SP𝔽 = S-idem SSP𝔽
  where
  PSℭ :   P (α  ρᵃ  ) ι (S  𝒦)
  PSℭ = ℑ⁺ , (𝔄⁺ , ((λ i  fst  i ) , ≅-refl))

  SPℭ :   S ι (P  ι 𝒦)
  SPℭ = PS⊆SP { = } PSℭ

  SSP𝔽 : 𝔽[ X ]  S ι (S ι (P  ι 𝒦))
  SSP𝔽 =  , (SPℭ , 𝔽≤ℭ)

Proof of the HSP theorem

Finally, we are in a position to prove Birkhoff’s celebrated variety theorem.


module _ {α ρᵃ  : Level}{𝒦 : Pred(Algebra α ρᵃ) (α  ρᵃ  ov )} where
 private ι = ov(α  ρᵃ  )

 open FreeHom (α  ρᵃ  ) {α}{ρᵃ}{}{𝒦}
 open FreeAlgebra {ι = ι}{I = }  using ( 𝔽[_] )

 Birkhoff :  𝑨  𝑨  Mod (Th (V  ι 𝒦))  𝑨  V  ι 𝒦
 Birkhoff 𝑨 ModThA = V-≅-lc{α}{ρᵃ}{} 𝒦 𝑨 VlA
  where
  open Setoid (Domain 𝑨) using () renaming ( Carrier to ∣A∣ )
  sp𝔽A : 𝔽[ ∣A∣ ]  S{ι} ι (P  ι 𝒦)
  sp𝔽A = SP𝔽{ = } 𝒦

  epi𝔽lA : epi 𝔽[ ∣A∣ ] (Lift-Alg 𝑨 ι ι)
  epi𝔽lA = 𝔽-ModTh-epi-lift{ = }  {p q}  ModThA{p = p}{q})

  lAimg𝔽A : Lift-Alg 𝑨 ι ι IsHomImageOf 𝔽[ ∣A∣ ]
  lAimg𝔽A = epi→ontohom 𝔽[ ∣A∣ ] (Lift-Alg 𝑨 ι ι) epi𝔽lA

  VlA : Lift-Alg 𝑨 ι ι  V  ι 𝒦
  VlA = 𝔽[ ∣A∣ ] , sp𝔽A , lAimg𝔽A

The converse inclusion, V 𝒦 ⊆ Mod (Th (V 𝒦)), is a simple consequence of the fact that Mod Th is a closure operator. Nonetheless, completeness demands that we formalize this inclusion as well, however trivial the proof.


 module _ {𝑨 : Algebra α ρᵃ} where
  open Setoid (Domain 𝑨) using () renaming ( Carrier to ∣A∣ )

  Birkhoff-converse : 𝑨  V{α}{ρᵃ}{α}{ρᵃ}{α}{ρᵃ}  ι 𝒦  𝑨  Mod{X = ∣A∣} (Th (V  ι 𝒦))
  Birkhoff-converse vA pThq = pThq 𝑨 vA

We have thus proved that every variety is an equational class.

Readers familiar with the classical formulation of the Birkhoff HSP theorem as an “if and only if” assertion might worry that the proof is still incomplete. However, recall that in the Setoid.Varieties.Preservation module we proved the following identity preservation lemma:

V-id1 : 𝒦 ⊫ p ≈̇ q → V 𝒦 ⊫ p ≈̇ q

Thus, if 𝒦 is an equational class—that is, if 𝒦 is the class of algebras satisfying all identities in some set—then V 𝒦 ⊆ 𝒦. On the other hand, we proved that V` is expansive in the Setoid.Varieties.Closure module:

V-expa : 𝒦 ⊆ V 𝒦

so 𝒦 (= V 𝒦 = HSP 𝒦) is a variety.

Taken together, V-id1 and V-expa constitute formal proof that every equational class is a variety.

This completes the formal proof of Birkhoff’s variety theorem.


← Setoid.Varieties.FreeAlgebras Top ↑